G)D) Sonar

State of Code
Developer Survey report

2026

State of Code Developer Survey report

2026

Table of Contents

Introduction 03
About this report 04
How developers are (really) using Al 05
Vibe check: Do developers trust Al? 09
The top Al tools, and how they're used 15
The second act of Al: Agents 20
Meet the new developer toil 25
The tricky relationship between Al and code security 29
Trying not to expand technical debt 34
Al coding and the experience gap 38
How enterprises and small businesses are approaching Al 44
SonarQube: The essential verification layer for Al code 50
Appendix: About our survey demographics 53

sonar.com

2[57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

Introduction

Sonar analyzes over 750 billion lines of code each day, which gives us a unique
understanding of code. This year, we kicked off a new report series called the State of
Code to share some of our knowledge with developers and technology leaders more
broadly.

We've already written reports on code reliability, security, maintainability, and the

specific coding personalities of leading LLMs. Those reports focused primarily on the
code itself and the models creating it. Next we wanted to expand that view to include the
state of code from the perspective of the people doing the work—the developers writing

code and collaborating with Al to build it.

Specifically, we wanted to get a read on what is changing for them. As Al rapidly

shifts the mechanics of coding, we need to understand the on-the-ground reality—the
efficiencies, the frustrations, and the new workflows emerging. To ensure we add real
value to the industry narrative, we designed this study to build upon the findings in
other leading developer surveys and to answer the pressing questions we still had after
reading them.

After surveying more than 1,100 developers, we saw a critical new narrative emerging.
Simply put, the explosion in Al-generated code hasn't led directly to massive and much-
hyped productivity gains yet. Instead, a verification bottleneck has emerged, creating

a whole new set of challenges. As we cover this and other findings, we'll explore how
the Al-coding shift is manifesting across software engineering organizations across the
world, and how they are adapting to address it.

sonar.com returnto TOC @ 3/57

https://www.sonarsource.com/
https://www.sonarsource.com/research/
https://www.sonarsource.com/research/
https://www.sonarsource.com/the-state-of-code-reliability.pdf
https://www.sonarsource.com/the-state-of-code-security.pdf
https://www.sonarsource.com/the-state-of-code-maintainability.pdf
https://www.sonarsource.com/the-coding-personalities-of-leading-llms.pdf

State of Code Developer Survey report

2026

About this report

The 2026 State of Code Developer Survey was a quantitative online survey conducted
among professional software developers. Fieldwork for the survey ran throughout
October 2025.

The final sample size for the study included 1,149 responses, distributed globally. All
respondents were 18 years or older, employed full-time or self-employed in a technology
role (the vast majority worked in software engineering, with some others in fields related
to IT ops, data science, or product management), write code or manage developers
using at least one programming language, and have used Al as part of their job within
the past year.

Further details about the report's demographic makeup are available in the appendix.

sonar.com return to TOC @

4[57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

How developers are (really) using Al

72% of developers who have tried Al use it every day

Al-assisted coding is officially a standard part of the developer workflow. 72% of developers who have
tried Al coding tools now use them every day.

4 N
72% of developers who have tried Al use it every day
How frequently (do you / your team or company) use Al coding tools in your development workflow?
. . Occasionally
Multiple times a day
6%
42%

o Weekly
72% -
every dCIy A few times a week

15%
Daily
30%
n=1,148
o J

Developers also report that 42% of their code is currently Al-generated or assisted—a share that they
predict will increase by over half by 2027, and up from only 6% in 2023.

Average share of Al-assisted or generated code committed by developers

What % of the code you committed or contributed was / will be generated or significantly assisted by Al tools?

o 65%
55%

42%

6%

2023 2024 2025 2026 2027

n=979

sonar.com returnto TOC @ 5/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

And Al is not just for side projects and experimentation. Developers are using Al across the gamut of
software projects, from prototypes (88%) and internal, non-critical production software (83%) all the
way to customer-facing applications (73%) and even mission-critical services (58%).

4 N
Developers are using Al across the gamut of software projects
Thinking about your team / company, which of the following types of work involves the use or assistance of Al?
88% 83% 73%
Prototypes, experiments, Production software Production software Production software
proofs of concept for internal, non-critical for customer-facing for business-critical or
workflows applications mission-critical services
n=1149
- J

sonar.com returnto TOC @ 6/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026
Use cases, and the gap between usage and effectiveness
Just because Al is used everywhere doesn't mean it's effective evenly. When we look at how
developers are using Al versus how effective they find it for those specific tasks, a clear gap sometimes
emerges. In a perfect world, adoption would increase more or less linearly with effectiveness. But
in practice, we see use cases where developers have reported low effectiveness but higher rates of
adoption.

e
Understanding Al use cases g
For which of the following tasks is your team / S @
company using Al coding tools?
How effective are Al coding tools for each of G 9 G
the following tasks you or your team / company o G Q
has used them for?
(0]
g
2
2
N
=
)
=
=]
T
©
b
3
b
o
0% Use case effectiveness % rated extremely / very effective 100%
Use case Effectiveness ¥ Adoption
A Writing documentation 74% 74%
B Explaining or understanding existing code 66% 78%
C Vibe coding / creating new projects with mostly Al-generated code 62% 48%
D Generating tests 59% 75%
E Researching technical solutions or exploring APIs/libraries 59% 74%
F Translating code from one language to another 58% 50%
G Assisting development of new code 55% 90%
H Code review 47% 55%
| Debugging code 44% 65%
Refactoring or optimizing existing code 43% 72%
Adding or updating functionality in existing code 42% 76%
n=1149
o
sonar.com returnto TOC @ 7/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

The best example of this is also the most common use case for Al: assisting with new code development
(90% of developers). Only 55% of those users rated Al as "extremely or very effective" for that task.

Refactoring or optimizing existing code shows a similar effectiveness gap: while 72% of developers
report using Al tools for this use case, only 43% attest to its effectiveness in that task.

Where Al really shines

The data shows Al tools are most effective at tasks that involve experimentation or working with what's
already there.

The tasks where Al is most effective include:

Writing documentation (74 % effective)

Explaining or understanding existing code (66% effective)

Vibe coding / green-field prototyping (62% effective)

Generating tests (59% effective)

Developers have embraced Al as a daily partner, but they're finding it's a much better "explainer" and
"prototyper" than it is a "maintainer" or "refactorer"—at least for now. It's highly effective at generating
new things (docs, tests, new projects) but struggles more with the complex, nuanced work of modifying
and optimizing existing, mission-critical code.

The takeaway

Developers are pragmatic: they've fully embraced Al as a daily assistant, using it to write
documentation and generate tests. But they also know its limits, showing less confidence in its
ability to handle complex, existing code. This gap between high usage and selective effectiveness
isn't just about features; it's about confidence. When the stakes are high, how much do developers
really trust the code Al generates? This brings us to the core of the issue: developer trust.

sonar.com returnto TOC @ 8/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

Vibe check: Do developers trust Al?

96% of developers don't fully trust that Al-generated code is
functionally correct

It's no secret that Al is changing development. Our study found that developers are seeing real benefits,
reporting an average personal productivity boost of 35%. On top of that, more than half (54%) say
they're more satisfied with their job as a result of Al.

And while 82% of developers agree Al helps them code faster, and 71% say it helps solve complex
problems more efficiently, this speed creates a new challenge: a trust gap. 96% of developers don't
fully trust that Al-generated code is functionally correct.

96% of developers don't fully trust that Al-generated code is functionally correct

To what extent do you agree with each of the following statements as it relates to the use of Al coding tools
and Al-assisted or generated code? [Choice: | trust that Al code is functionally correct

Completely agree Completely disagree

4% 17%

Somewhat agree

25%

Somewhat disagree

31%

Neither agree nor disagree

23%

n=1149

sonar.com returnto TOC @ 9/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

The verification bottleneck

Given our finding in the prior section that 96% of developers have a hard time trusting that Al-generated
code is functionally correct, you would think that verification of Al code is widespread. However, this is
not the case: only 48% of developers always check their Al-assisted code before committing.

48% of developers always check their Al-assisted code before committing

To what extent do you agree with each of the following statements as it relates to the use of Al coding tools and Al-
assisted or generated code? / Choice: I always check my Al-generated or assisted code before committing it

Completely disagree

o
o Completely agree

3%
completely 48%
agree Somewhat disagree
M%
Neither agree nor disagree
Somewhat agree 1%
27%
n=1,149
- J

This verification step isn't trivial. While Al is supposed to save time, developers are spending a
significant portion of that saved time on review. Nearly all developers (95%) spend at least some
effort reviewing, testing, and correcting Al output. A majority (59%) rate that effort as "moderate" or
"substantial."

In fact, 38% of developers say reviewing Al-generated code requires more effort than reviewing code
written by their human colleagues. (This contrasts with only 27% who say it requires less effort.)

sonar.com returnto TOC @ 10/57

https://www.sonarsource.com/

State of Code Developer Survey report

2026

Why is it so much work? 61% agree that "Al often produces code that looks correct but isn't reliable."
That's a critical finding—it means Al code can introduce subtle bugs that are harder to spot than typical
human errors. The same percentage (61%) agree that it "requires a lot of effort to get good code from

Al" through prompting and fixing.

~
61% of developers agree that Al often produces code that looks correct but isn't reliable
To what extent do you agree with each of the following statements as it relates to the use of Al coding tools and Al-
assisted or generated code? [Choice: Al often produces code that looks correct but isn't reliable
Completely agree Completely disagree
17% 5%
Somewhat disagree
61%
agree . .
Neither agree nor disagree
19%
Somewhat agree
45%
61% of developers agree that it requires a lot of effort to get good code from Al
To what extent do you agree with each of the following statements as it relates to the use of Al coding tools and Al-
assisted or generated code? | Choice: It requires a lot of effort (in prompting, fixing, etc.) to get good code from Al
Completely agree Completely disagree
19% 7%
6 1 0/ Somewhat disagree
o 19%
agree
Somewhat agree Neither agree nor disagree
N% 13%
n=1,149; Percentages are rounded
-

sonar.com return to TOC @

n/s7

https://www.sonarsource.com/

State of Code Developer Survey report

2026

Where Al's impact is felt (and where it's not)

Developers are clearly shipping code faster, but whether this consistently translates to better outcomes
is less clear.

While 70% say Al has positively impacted their time-to-market, less than half (47%) say it's had a
positive impact on the end-user experience or on reducing technical debt. This makes sense: if you're
shipping code that looks right but isn't reliable, you're not improving the user's experience or the long-
term health of your codebase.

Al impact is mostly seen in developer productivity and time-to-market, but there's room for growth in
multiple other aspects

What impact has Al-generated or assisted code had on your team / company for each of the following?

@ Very positive impact Somewhat positive impact

Impact of Al use on key activities Y% Total
Developer productivity “ 63 89%

Time-to-market 2 70%

Feature or fix release frequency 46 60%

Code quality 45 58%

Code maintainability 44 56%

End-user experience @ 37 47%

Technical debt e S 47%

Rework / patch costs ° 36 42%

Defect rates e 33 39%

Vulnerability rates 9 29 34%

Frequency of outages / incidents 0 22 25%

Severity of outages / incidents 0 20 24%

n=1,149

SonarQube users report stronger positive impacts on code quality, technical debt, rework costs, defects,
and vulnerabilities than non-users. This suggests that having a systematic verification process in place
is key to turning Al's speed into real-world quality improvements.

sonar.com return to TOC @

12/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

A new set of skills and concerns

This new "verify" step is also redefining what it means to be a developer. When we asked what skills
will be most important in the Al era, the number one answer was "reviewing and validating Al-generated
code for quality and security" (47%). This was followed by "efficiently prompting Al tools" (42%).

Code quality review & validation is the most important skill for developers in the Al era

Which of the following skills will be most important for developers to have in the evolving Al-assisted or generated
coding environment?

Reviewing and validating Al-generated code for quality

A 47%
and security

Efficiently prompting Al tools to generate code that

] 42%
meets requirements

Translating domain knowledge into code requirements 27%

Architecting complex systems and integrations 25%

Identifying and mitigating security risks introduced by

24%
Al-generated code

Creative problem-solving and innovation 23%

Maintaining system performance, reliability, and

. : . . 23%
efficiency in production environments

Shaping coding standards and governance 19%

Integrating Al outputs into workflows and toolchains 17%

Refactoring and debugging Al-generated code 16%

Building resilient systems 1%

Collaborating and mentoring other developers 10%

n=1,149

sonar.com returnto TOC @ 13/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

Ultimately, Al is speeding up code generation, but it's also created a bottleneck at the verification stage
of software development, with more work now required to review code.

The takeaway

It's clear that this new verification bottleneck is the central challenge in the age of Al-assisted
coding. But one critical component of code review is knowing the provenance of the code.
This raises a critical question: which code generation tools are even being used, and how are
developers accessing them? This leads us to another key finding: the rapid, often ungoverned,
sprawl of Al tools.

sonar.com returnto TOC @ 14/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

The top Al tools, and how they’re used

Copilot and ChatGPT lead the field

Al adoption isn't just happening; it's already starting to coalesce around favorites. The two most
dominant tools, GitHub Copilot and ChatGPT, are used by 75% and 74% of developers, respectively,
with Claude following at 48%.

GitHub Copilot and ChatGPT are the most widely used tools for software development tasks

In the past year, which of the following Al coding tools or Al features have you or your team / company used for
software development tasks?

GitHub Copilot 75%

ChatGPT 74%

Claude / Claude Code 48%

Gemini / Duet Al 37%

Cursor 31%

Perplexity 21%

OpenAl Codex 21%

JetBrains 17%

Amazon Q Developer 12%

o

Windsurf %
Others 37%

n=1,149

sonar.com returnto TOC @ 15/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

But, the data reveals a complex and fragmented picture: on average, development teams juggle four
different Al tools.

The average development team uses four different Al tools

Based on aggregated answers to the following question: In the past year, which of the following Al coding
tools or Al features have you or your team / company used for software development tasks?

Frequency
- - Average: 4
20
i
1
1
1
15 ;
1
1
1
1
1
1
1
1
1
10 i
i
1
—_ 1
2 i
~ 1
(%) 1
£ i
g ° |
\|6 1
o i
()] 1
© 1
= i
3 :
& 0 !
1 2 3 4 5 6 7 8 9 10
Number of Al tools used
n=1,149
_ J

For engineering leaders, this means that while Al is boosting productivity, it's also introducing a “bring
your own Al" (BYOAI) culture that's running ahead of official governance.

sonar.com returnto TOC @ 16/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026
The personal account problem
It also turns out that many of the tools developers are using aren't fully approved by their workplaces.
Across the top 10 Al tools, our data shows that 35% of developers are accessing them through personal
accounts rather than work-sanctioned ones.
e
Over 50% of developers use ChatGPT through personal accounts while 78% use GitHub Copilot
through work accounts
In the past year, how have you personally used each of the following Al coding tools or Al features for software
development tasks as part of your work?
@ Through personal account @ Through work-sanctioned account
Perplexity 63% 31%
ChatGPT (for coding-related tasks, e.g. generation, 529, 47%
debugging, explanation)
Google Gemini Code Assist / Duet Al (in Google Cloud, IDEs) 40% 55%
Claude / Claude Code 36% 53%
Open Al Codex 35% 52%
Command-line Al coding tools 33% 57%
Jetbrains Al Assistant (or similar Al features in 28% 58%
JetBrains IDEs)
Cursor (Al-native IDE) 27% 64%
Amazon Q Developer (formerly CodeWhisperer) 17% 72%
GitHub Copilot / Copilot Chat 17% 78%
n=1,147; bases vary
AN
sonar.com returnto TOC @ 17/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

ChatGPT is a perfect example. While 74% of developers have used it in the past year, 52% of those
users are accessing it via their personal accounts. This trend is even more pronounced with tools like
Perplexity, where 63% of its users are logging in via personal accounts.

This shadow adoption creates a massive blind spot for security and compliance. When developers
use personal accounts, they might be feeding sensitive company or customer data into public models,
creating serious risks.

Interestingly, this isn't a universal problem. Some tools are clearly being adopted through official
channels. GitHub Copilot and Amazon Q Developer, for example, show much lower personal account
use (17% for both), suggesting a more formal, top-down rollout. And Cursor is similar, showing only 27%
in personal account use compared to 64% on work-sanctioned accounts.

Who is using which tools?
The data also shows that tool choice varies based on company size and developer experience.

» Company size: Smaller companies (SMBs) are more likely to be using ChatGPT, Claude, JetBrains,
and command-line Al tools than their larger counterparts.

4 N
ChatGPT, Claude and JetBrains are favorites among SMBs
In the past year, which of the following Al coding tools or Al features have you or your team / company used
for software development tasks?
@ svB (@ Mid-market Enterprise
73 76 76
40
34237 4 33,
23 23 22 22 *
19 20 21
“ " 1IN [TRTEN T
GitHub ChatGPT Claude Gemini / Cursor PerpIeX|ty OpenAl JetBrains Amazon Q Command-
Copilot Duet Al Codex line Al
n=1,149; *indicates statistical significance
o J

sonar.com returnto TOC @ 18/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026
o Experience level: Junior developers are more likely to be using a more varied set of tools, including
Cursor, Perplexity, OpenAl Codex, and JetBrains Al.
p
Cursor, Perplexity, OpenAl Codex are favored by junior developers
In the past year, which of the following Al coding tools or Al features have you or your team / company used
for software development tasks?
@ =10years (@ 11-20 years = 20 years
78* 77
71 76 72 71
48 47 49
40 o, 36
29
2 B2, 2y,
| ll l n 11313 13 12 12
% i° s mn
GitHub ChatGPT Claude / Google Cursor OpenAl JetBrains Amazon Q Command-
Copilot / (for coding- Claude Gemini (Al-native Codex Al Assistant Developer line Al
Copilot related Code Code Assist IDE) (or similar coding
Chat tasks, e.g., / Duet Al Al features tools
generation, (in Google in JetBrains
debugging, Cloud, IDEs) IDEs)
explanation)
n=1,149; *indicates statistical significance
N
This data paints a clear picture: developers aren't waiting for permission. They are actively
experimenting with a wide array of tools to get their work done, often on their own personal accounts.
For engineering leaders, the challenge isn't if Al will be used, but how to manage the new risks it
introduces without slowing down the clear productivity gains.
The takeaway
This fragmented, "bring your own Al" culture highlights the first major wave of Al adoption:
developers are seizing on assistant tools to speed up individual tasks. But this is just the beginning.
As developers look to move beyond simple code generation to full task automation, they're
turning to agentic Al. We'll explore this next, looking at how developers are beginning to use these
autonomous agents and what it means for the future of the development lifecycle.
sonar.com returnto TOC @ 19/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026
[]
The second act of Al: Agents
64% of developers have started to use Al agents
A key finding from this study is that agentic Al is moving from experiment to everyday tool. 25%
of developers report using agentic Al tools regularly in their workflows, and another 39% have
experimented with them. This means a combined 64 % of developers have already started using these
advanced agents.
p
64% of developers have started to use Al agents
Is your team / company currently using, or have you experimented with, Al agents in your software
development work?
— Don't know / Not sure
Yes, we use Al agents 39,
regularly in our °
workflow No, and we are not
(o) 25% currently exploring or
4 /o planning to use Al agents
using Al Yes, we have n%
Clgents experimented with .
Al agents, but No, but we are actively
they are not yet in exploring or planning to
regular use use Al agents
39% 21%
n=1149
.
Agentic use cases match Al's natural strengths
The data on agentic Al usage shows a strong focus largely on tasks where we know Al naturally
performs reasonably well. Among the 64% of developers using agentic Al, here are the top use cases:
« Creating code documentation (68% of developers)
« Automated test generation and execution (61% of developers)
« Automated code review (57% of developers)
On the other end of the spectrum, the least common use case is security vulnerability patching or
remediation, with only 28% of developers using agents for this task.
sonar.com returnto TOC @ 20/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026
These popular uses line up well with their perceived effectiveness. 70% of developers rated creating
code documentation as a somewhat or very effective agentic Al task. 59% of developers rated
automated test generation as somewhat / very effective, and automated code review received 52%,
suggesting that developers are finding real value in the tasks they're automating most often.

-
Understanding agentic P
Al use cases e
For which of the following tasks is your team /
company using Al agents?
How effective are Al agents for each of the
following tasks you've used them for? Q
o 00
b
S
o
: Q
N
: (G
2
o
©
©
b
3
3
=
0% Use case effectiveness % rated extremely / very effective 100%
Use case Effectiveness V¥ Adoption
A Creating code documentation 70% 68%
B Automated test generation and execution 59% 61%
C Vibe coding apps that create code based on conversational language 59% 46%
D Project planning, task breakdown, or requirements analysis 54% 45%
E Automated code review 52% 57%
F Automated code generation for entire features or modules 51% 48%
G Automated infrastructure setup or management 51% 29%
H Automated code refactoring, modernization, or optimization 49% 48%
| Security vulnerability patching or remediation 48% 28%
Automated debugging and issue remediation 47% 44%
Automated deployment pipeline configuration or management 47% 33%
n=737
o
sonar.com returnto TOC @ 21/57

https://www.sonarsource.com/

State of Code Developer Survey report

2026

Where different teams see success

While documentation is the clear all-around winner, the data reveals some fascinating, specialized

bright spots for different groups.

For example, developers at small-to-medium businesses (SMBs) are finding success with generative
tasks. 67% of developers at SMBs reported that Al agents were effective for vibe coding tasks

(using conversational language to create apps). This is significantly higher than peers at enterprise
organizations (52%), suggesting agents are a powerful force multiplier for smaller, agile teams. Other
bright spots for SMBs include project planning, task breakdown, or requirements analysis (63% of
developers rated Al as effective) and, interestingly, security vulnerability patching or remediation (57 %).

Use cases where Al agents offer more value to SMBs

How effective are Al agents for each of the following tasks you've used them for?

B svB [Mid-market Enterprise
80
67%
62% 63%

0,

60) 57%
52% 50% 50%
48%
44%

40
20
0

Vibe coding apps that create
code based on conversational
language

Project planning, task
breakdown, or requirements
analysis

Security vulnerability patching
or remediation

n=737

In between SMBs and enterprises, we find that developers at midsized organizations are also seeing

success in key areas related to infrastructure setup. In particular, more developers report effectiveness
for use cases like automated infrastructure setup or management (62%) and automated deployment
pipeline configuration or management (56%).

sonar.com return to TOC @

22[57

https://www.sonarsource.com/

State of Code Developer Survey report 2026
Al agent use cases that work (and don't work) for different company sizes
How effective are Al agents for each of the following tasks you've used them for?
@ svs @ Mid-market Enterprise %
I 69
Creating code documentation I 70
70
, . I —— 67
Vibe coding apps that create code based on _ 62
conversational language 52
I 57
Automated test generation and execution I— 61
60
))) I ©3
Project planning, task breakdown, or requirements I 50
analysis 50
I 5
Automated code review I 52
52
I— 55
Automated code generation for entire features or modules I 50
49
PN
Automated infrastructure setup or management I &2
46
. - — 50
Automated code refactoring, modernization, or —
optimization
50
I 57
Security vulnerability patching or remediation I 43
44
I 18
Automated debugging and issue remediation I 54
43
o)) I 42
Automated deployment pipeline configuration or I -
management a4
n=737
sonar.com returnto TOC @ 23/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

The takeaway

It's clear that agentic Al is beginning to successfully automate key parts of the development
process, with a quarter of developers already using it regularly for tasks like documentation and
test generation. But does automating these specific jobs mean developers are finally free from
frustrating, repetitive work? Despite automating these jobs, Al might not be eliminating toil, but
simply changing its shape.

sonar.com returnto TOC @ 2457

https://www.sonarsource.com/

State of Code Developer Survey report 2026

Meet the new developer toil

The illusion of toil savings

As mentioned in the “Vibe check: Do developers trust Al?" chapter, developers are seeing higher levels
of productivity when using Al coding tools. They also reported toil reduction: 75% of developers said
that Al reduces their "toil work"—tasks that hinder developer productivity or increase frustration.

75% of developers believe that Al reduces amount of time spent on toil work

To what extent do you agree with each of the following statements as it relates to the use of Al coding tools
and Al-assisted or generated code? | Choice: Al reduces the amount of time I spend on toil work

Not applicable

1%

Completely disagree

Completely agree

24%

2%

75%

agree

Somewhat disagree

8%

\ Neither agree nor disagree
14%

Somewhat agree

51%

n=1,149

But under the surface, the picture becomes more complicated.

When asked about the portion of their work week assigned to tasks associated with toil (e.g. managing
technical debt, debugging legacy or poorly documented code), developers reported spending nearly a
quarter of their time on toil work.

Interestingly, the amount of time spent on toil (an average of 23-25%) stays almost exactly the same for
developers who use Al coding tools frequently and for those who use them less often.

sonar.com returnto TOC @ 25/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

~
Time spent on toil
% of work week spent on toil work tasks .
% of work week spent on toil
- - Average: 24% of work week
60 == Use Al multiple times a day
== Use Al occasionally / weekly
40
S
(%]
3
2 20
o
Q.
(7]
e
Y
o
(]
o
©
c
[]
4
e 0
0-10% 11-25% 26-40% 41-50% Over 50%
Percentage of time spent on toil per week
n=1,149
o J
The great toil shift

It turns out that while developers spend less time on certain toil tasks, Al is not eliminating toil entirely; it
is simply shifting its nature. Developers are swapping older frustrations for new ones:

o Less frequent Al users are more likely to report toil from tasks like debugging poorly documented
code and understanding existing systems. These are exactly the kinds of problems that Al coding
tools are good at solving.

o The most frequent Al users, however, are more likely to see toil in new areas: managing technical debt
and, unsurprisingly, correcting or rewriting code created by Al coding tools.

sonar.com returnto TOC @ 26/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

Toil didn't shrink with Al, it changed flavor: more frequent users of Al are more likely to
report toil in different areas

Thinking about your current workflows, what are your biggest sources of "toil work" that hinder / sap
productivity or increase frustration in your current role?

- Use Al multiple times per day Use Al weekly or occasionally Toil based on frequency of Al use
Managing technical debt (e.g., refactoring complex or Q) 487
outdated code) 34%
G 30 %
Debugging legacy or poorly documented code 0340/
(J
G 25%
Correcting or rewriting code created by Al coding tools 15% °
(]
G 21%
Finding information or understanding existing systems ° 20%
(]
. . G 6%
Managing broken or outdated dependencies 17%
(]
Poorly performing, unreliable, or overly complex G 1%
development tools 12%
G 10%
Profiling and tuning code performance
12%
n=626
o J

This data suggests that while Al helps clear away old development hurdles, it creates new ones. We've
accelerated code generation, but that just moves the pressure downstream to code management and
verification.

Teams are doubling down on deterministic review

Developers are already adapting to this new reality. The data shows a strong reliance on static analysis
tools, which are deterministic code review solutions, to manage the surge of new code from Al.

o Static analysis tools are widely adopted, with 70% of developers using them.

o 57% are already applying them to review Al-generated code.

sonar.com returnto TOC @ 27/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

How developers use static analysis code review

How is your company or team currently using the following automated code review tool? / Choice: Static
Analysis Tool

) To review developer-
To review Al-generated code \ written code
57% |
o N/A: We don't
use static S~ use this tool

analysis to To review developer-written

review Al code code and Al-generated code 22%
49% Not sure
L 9%

n=799

N J

There is also a pronounced swing towards applying static analysis review to Al code among enterprise
developers: 60% of them review Al code with static analysis, compared to 51% of SMB developers. This
is likely a side effect of higher investments by enterprises into processes to protect code quality across
their codebases.

This isn't a temporary trend. Looking ahead, developers expect their reliance on these tools to increase.
The perceived value of deterministic, rules-based code review is set to grow from 60% today to 68%
over the next two years.

The takeaway

While Al is successfully changing how developers work, it hasn't reduced the overall burden of
toil. It has simply focused that toil on a new, critical skill: verification. As a result, the industry is
reinforcing its commitment to trusted, automated analysis to ensure all code—whether written by
developer or an Al—is secure, reliable, and production-ready.

And this new verification challenge isn't just about managing messy code or technical debt; it's
about confronting a much higher-stakes issue: the security of their code. This complex relationship
between Al-generated code and code security is exactly what we'll explore next.

sonar.com returnto TOC @ 28/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

The tricky relationship between Al and
code security

57% of developers worry that using Al risks sensitive data
exposure

According to our study, the biggest concern developers have about Al code generation is security—
specifically, 57% of developers worry about the risk of Al code exposing sensitive company or customer
data. This isn't a minor issue; it's a majority of developers voicing a critical fear about the tools they're
increasingly required to use.

Top 10 concerns developers have about Al-assisted or generated code

How concerned are you about each of the following when it comes to Al-assisted or
generated code today? / Choice: Extremely / Very Concerned

Exposure of sensitive company or customer data G 57 %

Over-reliance on Al leading to a decline in the team's understanding of the codebase G 53%

Deskilling or erosion of our own coding abilities G 48%
Introduction of new or subtle security vulnerabilities G 47 %
Introduction of severe security vulnerabilities G 44%

Functional correctness / accuracy of generated code (does what it's supposed to do) G 43%

Al tools lacking sufficient context about my specific project or codebase G 43%
Creation of architectural inconsistencies or drift from intended design G 40%
Infringements on code licensing or intellectual property G 38%
Nondeterministic results (identical prompts creating differing outputs) G 35%
n=1,149
o J

This anxiety doesn't stop at data leaks. Developers are also on high alert for what the Al is creating.
Nearly half (47%) are concerned about the introduction of new or subtle security vulnerabilities, and
44% worry about Al introducing severe vulnerabilities. It's clear that while Al boosts speed, it's also
creating a new layer of risk that developers are now responsible for managing.

sonar.com returnto TOC @ 29/57

https://www.sonarsource.com/

State of Code Developer Survey report

2026

Enterprises feel the risk most

These Al concerns are most acute in enterprise environments. In large enterprises (over 1,000
employees), the percentage of developers concerned about exposure of sensitive company or
customer data jumps to 61%. These organizations, which live and die by data integrity and compliance,

are understandably the most cautious.

In fact, enterprises are significantly more concerned than smaller companies about:

 Direct prompt injections (34%, compared to 25% for SMB)

« Indirect prompt injections (35%, compared to 25% for SMB)

» Ensuring compliance with industry and organizational standards (38%, compared to 28% for SMB)

Al concerns: Enterprises vs. SMBs

How concerned are you about each of the following when it comes to Al-assisted or generated code today?

SMB Enterprise
Exposure of sensitive company or customer data 54% 61%*
Over-reliance on Al leading to a decline in the team's understanding of the codebase 56% 53%
Deskilling or erosion of our own coding abilities 49% 47%
Introduction of new or subtle security vulnerabilities 44% 49%
Introduction of severe security vulnerabilities 46% 45%
Functional correctness / accuracy of generated code (does what it's supposed to do) 44% 43%
Al tools lacking sufficient context about my specific project or codebase 43% 43%
Creation of architectural inconsistencies or drift from intended design 42% 38%
Infringements on code licensing or intellectual property 36% 39%
Nondeterministic results (identical prompts creating differing outputs) 29% 39%*
Performance and reliability of generated code 38% 32%
Ensuring compliance with industry-specific or organizational coding standards 28% 38%*
Direct prompt injections 25% 34%*
Indirect prompt injections 25% 35%*

n=837; *indicates statistical significance

sonar.com return to TOC @

30/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

A traditional risk management approach

What does this mean for developers? Our data shows that they're clearly worried about security, but
they aren't yet comfortable leveraging Al to solve it.

One of the use cases commonly touted for agentic Al tools is fixing security issues in code. But our
research shows that while security is a top concern, it's the least common use case for agentic Al: only
28% of developers are using Al agents for security vulnerability patching or remediation. There's a
major gap between what developers need (secure code) and what they're using Al for.

So how are organizations responding to this new risk profile? The truth is that at the moment, there's no
clear consensus. Roughly a third of development teams report they are now more rigorous about code
security, code quality, and compliance as a direct result of Al's growing influence. But for each of those,
roughly another third of respondents report that they are still evaluating what changes will be needed.

36% of organizations are more rigorous about code quality because of Al

Has there been a change in how you approach the following as a result of the increasing
use of Al coding tools? | Choice: Code quality

Don't know / Not sure

We are more rigorous in our 2%
reviews and pay more attention to

this due to Al-generated code N/A: Al tools aren't used

extensively enough to impact this

36%

3%
No significant change related to
Al tool usage

We are still evaluating and figuring

out how Al affects this and what 18%
changes are needed We are less rigorous in our
299, reviews and are less hands-on

due to Al-generated code

12%
n=1,149

sonar.com returnto TOC @ 31/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

37% of organizations are more rigorous about code security because of Al

Has there been a change in how you approach the following as a result of the increasing
use of Al coding tools? / Choice: Code security

Don't know / Not sure

We are more rigorous in our 3%
reviews and pay more attention to

this due to Al-generated code N/A: Al tools aren't used

extensively enough to impact this

37%

4%
No significant change related to
Al tool usage

We are still evaluating and figuring

out how Al affects this and what 17%

changes are needed We are less rigorous in our

31% reviews and are less hands-on

due to Al-generated code

7%

n=1149

o J
4 N

32% of organizations are more rigorous about compliance because of Al

Has there been a change in how you approach the following as a result of the increasing use
of Al coding tools? | Choice: Compliance

Don't know / Not sure

We are more rigorous in our 5%
reviews and pay more attention to

this due to Al-generated code N/A: Al tools aren't used

extensively enough to impact this

32%
5%
No significant change related to
. . Lo Al tool usage

We are still evaluating and figuring
out how Al affects this and what 20%
changes are needed We are less rigorous in our
31% reviews and are less hands-on
\ due to Al-generated code
7%
n=1,149
AN J/

sonar.com returnto TOC @ 32/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

The takeaway

It's clear that as Al adoption moves from experiment to enterprise staple, organizations are
scrambling to build guardrails for security, quality, and compliance. But this new burden of
verifying code that "looks correct but isn't reliable" creates a new, hidden drag on teams. This
friction—spending time fixing subtle Al errors instead of building features—is essentially a new
form of technical debt. Next, we'll explore how Al is fundamentally reshaping what technical

debt means.

sonar.com returnto TOC @ 33/57

https://www.sonarsource.com/

State of Code Developer Survey report

2026

Trying not to expand technical debt

Most developers have seen both positive and negative
effects of Al on technical debt

When it comes to technical debt, our study uncovered a complex picture. We found that Al is taking

away with one hand and giving back with the other.

Let's start with the detrimental effects. Nearly all developers (88%) report at least one negative impact
of Al on their technical debt.

S~
88% of developers report at least one negative impact of Al on technical debt
In which of the following ways, if any, has Al-generated or assisted code impacted your team /
company's technical debt?
Created code that looked correct but was not reliable
Created unnecessary or duplicative code
8 8 /o Created unreliable or buggy code
respondents
citing at least Created code that was difficult to maintain or refactor
one issue
Introduced integration issues or compatibility issues
Increased security vulnerabilities
Wrote poor or no documentation
n=1,136
o

sonar.com return to TOC @

34/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

53% of developers attributed a negative impact on their technical debt due to Al creating code that
looked correct but was unreliable. This is a particularly pernicious problem because it may create a
false sense of security and cause developers to skip thorough review and testing.

The second-biggest negative impact is bloat. 40% of developers say Al has increased technical debt
by creating unnecessary or duplicative code. Our LLM personality research confirms that LLMs have

inherent tendencies to create verbosity, complexity, and unnecessary technical debt when writing code.

This is a critical issue because "managing technical debt" is already the #1 source of toil for core
development tasks, with 41% of developers placing it in their top 5 frustrations. Al, if unmanaged, could
pour fuel on an existing fire by generating a high volume of code that's deceptively unreliable.

Top 5 toil work tasks that hinder productivity or increase frustration

Thinking about your current workflows, what are your biggest sources of "toil work" that
hinder / sap productivity or increase frustration in your current role?

Managing technical debt (e.g., refactoring complex or outdated code) 41%

Debugging legacy or poorly documented code 32%

Finding information or understanding existing systems 23%

Correcting or rewriting code created by Al coding tools 21%

Managing broken or outdated dependencies 17%

n=1,149

sonar.com returnto TOC @ 35/57

https://www.sonarsource.com/
https://www.sonarsource.com/the-coding-personalities-of-leading-llms.pdf

State of Code Developer Survey report

2026

Al is tackling the grunt work

Despite the negative impact on technical debt, nearly all developers (93%) also report at least one

positive impact from Al on technical debt as well. Developers are clearly using Al to tackle the most

tedious parts of managing technical debt.

-
93% of developers report at least one positive impact of Al on technical debt
In which of the following ways, if any, has Al-generated or assisted code impacted your team /
company'’s technical debt?
Improved documentation 57
Improved test coverage and debugging 53
9 3 /o Refactored or optimized existing code 47
respondents
citing at least Improved code maintainability 32
one benefit
Reduced defect rates 24
Reduced security vulnerabilities 18%
-

n=1,136

The top positive impacts from Al are all about reducing developer toil work:

e Improved documentation (57%)
e Improved test coverage and debugging (53%)

o Refactoring or optimizing existing code (47%)

This shows developers are intelligently applying Al to the exact problems they hate dealing with. The

"improved documentation" stat is especially interesting. Experienced developers, who have likely spent

years wrestling with poorly documented legacy systems, seem to value this the most. We found that

65% of developers with over 20 years of experience cited improved documentation as a key technical

debt benefit of Al.

sonar.com return to TOC @

36/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

4 N\
Senior developers value impact of Al on technical debt documentation
In which of the following ways, if any, has Al-generated or assisted code impacted your team / company’s
technical debt?
@ =10years [11-20 years = 20 years
80
65%
60 54% 55%
40
20
0
Positive impact on technical debt documentation n=1136
o J

The data paints a clear picture. Al isn't a simple "fix technical debt" button. It's a powerful, but
potentially messy, new collaborator. It's helping developers clean up old messes (like documentation
and testing) but creating new, more subtle messes in the process (like unreliable or duplicative code).

The takeaway

It's clear that Al's impact on technical debt is complicated—it's both a powerful clean-up tool and
a new source of messy, hidden problems. But this new reality isn't being experienced the same
way by everyone on the team. Our data shows a fascinating split in how developers are using

Al, what they're using it for, and what they worry about. One of the biggest dividers? Years of
experience.

Next, we'll dig into the differing Al use cases and attitudes of junior and senior developers—and
what it means for your team's code health.

sonar.com returnto TOC @ 37/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

Al coding and the experience gap

The impacts of Al coding are hitting junior developers harder

Our study reveals a fascinating perception gap: less-experienced developers (<10 years) are more likely
to report productivity benefits from using Al tools than their most-experienced peers (>20 years), but
they're also more likely to report that reviewing Al-generated code takes greater effort.

The junior-senior split: How Al is used

We're seeing a clear divergence in how these two groups apply Al.

Less-experienced developers estimate that 45% of their committed code is Al-assisted, slightly more
than the 40% estimated by their most-experienced peers. The junior group is also more likely to use
newer tools like Cursor and Perplexity, as well as agentic Al, whereas senior developers will tend to rely
on more proven Al tools like Copilot.

Less-experienced developers are also more likely than senior developers to use Al for development
tasks like explaining existing code, updating functionality, and generating tests. In contrast, their most-
experienced colleagues are more likely to use it for code review and assisting development of new code.

4 N
Al use case adoption based on years of experience
For which of the following tasks is your team |/ company using Al coding tools?
=10 years 1-20 years = 20 years
Assisting development of new code 86% 92%* 90%
Explaining or understanding existing code 80%* 78% 74%
Adding or updating functionality in existing code 78% 78% 68%*
Generating tests 76% 77% 69%*
Writing documentation 74% 75% 73%
Researching technical solutions or exploring APIs/libraries 75% 75% 1%
Refactoring or optimizing existing code 74% 72% 69%
Debugging code (for example, stack trace analysis) 67% 65% 63%
Code review 52% 57% 58%
Translating code from one programming language to another 49% 52% 46%
n=1,149; *indicates statistical significance

sonar.com returnto TOC @ 38/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

Junior developers report higher productivity

For less-experienced developers, the upside of Al is undeniable. They report significantly higher gains
across the board than their senior counterparts:

o Productivity: Junior developers report a 40% average productivity increase versus 32% for their
more experienced peers.

4 N
Junior developers report higher average increase in personal productivity due to Al
Please estimate the percentage change in your personal productivity due to Al coding tools.
40% @ =10years () 11-20 years = 20 years
40 o
34% 329
30
20
10
0
Average increase n=1,048
- J

» Job satisfaction: 58% report higher job satisfaction, compared to 49% of senior developers.

4 N\
Junior developers report higher job satisfaction related to the use of Al/Al-coding tools
To what extent do you agree with each of the following statements as it relates to the use of Al coding tools
and Al-assisted or generated code? / Choice: I'm more satisfied with my job overall since we started using Al
60 58% @ =10years ([1-20 years = 20 years
53%
40 49%
20
0
More satisfied with job overall n=1149
o J

sonar.com returnto TOC @ 39/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

o Skill advancement: 62% say they have more time to advance their skills, far outpacing the 51% of
senior developers who agree.

/ N\
62% of junior developers say they have more time to advance their skills, far outpacing the 51%
of senior developers who agree.
To what extent do you agree with each of the following statements as it relates to the use of Al coding tools and
Al-assisted or generated code? | Choice: | have more time to spend on advancing my skills than before | used Al
@ =10years ([11-20 years = 20 years
80
62%
57%
60 51%
40
20
0
Have more time to spend on advancing skills n=1149
- J

Less-experienced developers also perceive Al as being more effective in adding or updating
functionality in existing code. When asked about Al's effectiveness for this use case, 45% of junior
developers said it was effective, compared to only 34% of senior developers.

4 N\
Junior developers find Al more effective in adding or updating functionality in existing code
How effective are Al coding tools for each of the following tasks you or your team / company has used
them for? / Choice: Extremely / Very Effective
@ =10years () 11-20 years = 20 years
50 45%
43%
40 34%
30
20
10
0
Al effectiveness in adding or updating functionality in existing code n=1149
o J

sonar.com returnto TOC @ 40/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

Senior developers report fewer concerns

Looking at the findings above, you would be forgiven for thinking that junior developers are generally
less concerned about the negative impacts of Al than their senior colleagues. But it turns out that the
reverse is true.

Senior developers are significantly less likely to agree with a number of critical concerns:

o Reliability: 48% say Al code "looks correct but isn't reliable" (vs. 66% of junior developers).

» Volume: 32% agree that "too many lines of code are being generated with Al" (vs. 47% of junior
developers).

Senior developers are less concerned about Al producing code that looks correct but isn't reliable

To what extent do you agree with each of the following statements as it relates to the use of Al coding tools and Al-
assisted or generated code? / Choices: Completely / Somewhat agree

. =10 years . 11-20 years = 20 years
80
66% 65%
60
48%
40
20
0
Al produces code that looks correct but isn't reliable n=1149
N\ J
4 N

Senior developers are less concerned about Al generating too many lines of code

To what extent do you agree with each of the following statements as it relates to the use of Al coding tools and Al-
assisted or generated code? | Choices: Completely / Somewhat agree

47% @ =10years ([11-20 years = 20 years
50 ° 45%
40
32%
30
20
10
0
Too many lines of code are being generated with Al n=1149
N\ J

sonar.com returnto TOC @ 41/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

o Context: 31% agree that Al "makes complex coding tasks more difficult because it lacks context" (vs.
47% of junior developers).

Senior developers are less concerned about Al making complex coding tasks more difficult due to
lack of context or understanding

To what extent do you agree with each of the following statements as it relates to the use of Al coding tools and Al-
assisted or generated code? / Choices: Completely / Somewhat agree

. @ =10years ([11-20 years = 20 years
50 47% 43%
(J

40
31%
30
20

10

Al makes completing complex coding tasks more difficult because it often lacks context or understanding n=1,749

This directly translates into review effort. Developers with 10 years or less of experience are
significantly more likely (40%) to say that reviewing Al-generated code requires more effort than
reviewing code written by a developer. Only 29% of developers with = 20 years of experience feel the

same way.
4 N
Senior developers are less likely to say that reviewing Al-generated code requires more effort
compared to developer-written code
Does reviewing Al generated code require more or less effort than reviewing code written by developers?
@ =10years ([11-20 years = 20 years
50
40% 42%
40
o,
30 29%
20
10
0
Reviewing Al-generated code requires more effort than developer-written code n=1,138
o J

sonar.com returnto TOC @ 4257

https://www.sonarsource.com/

State of Code Developer Survey report 2026

Senior developers also express less anxiety about the long-term impact of Al on their skills, with 41%
concerned about the erosion of their personal coding abilities (vs. 50% of junior developers) and 45%
worried about a decline in codebase understanding (vs. 56% of junior developers).

4 N
Senior developers are less worried about the impact Al is making on their skills & abilities
How concerned are you about each of the following when it comes to Al-assisted or generated code today? | Choice:
Extremely concerned / Very concerned
=10 years 11-20 years = 20 years
60 56% 56% L) y e y v
50% 50%
45%
1%
40
20
0
Over-reliance on Al leading to Deskilling or erosion of personal
a decline in understanding of coding abilitie n=1149
codebase
o J

The impacts of experience

The data tells a clear story. Less-experienced developers are leaning on Al to understand and write
code, getting a massive productivity boost, but also the first to feel the pain when that code is buggy,
verbose, or hard to maintain. More-experienced developers, meanwhile, appear to be more skeptical
of its output, applying it to tasks like prototyping, where speed is key and the code isn't expected to be
perfect. They seem less concerned about the potential negative impacts of Al code, perhaps because
they are more targeted in how they use Al tools, or because they believe in their own abilities to catch
and correct issues with Al code before they cause problems.

The takeaway

It's clear that a developer's years of experience fundamentally shape their relationship with Al,
from the tools they choose to the friction they feel. But experience isn't the only major divide our
study uncovered. The size of an organization also plays a critical role in shaping strategy and
outcomes. Next, we'll explore why smaller companies are reporting bigger productivity gains from
Al, while large enterprises are moving more cautiously, focusing on rigorous compliance.

sonar.com returnto TOC @ 43[57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

How enterprises and small businesses are
approaching Al

Small businesses move faster with Al, but enterprises get
better code

According to our study, developers at small-to-medium businesses (SMBs under 200 employees) report
a 39% increase in personal productivity—slightly outpacing other developers who report a 34% lift.

4 N
SMB developers report a higher average increase in personal productivity due to Al
Please estimate the percentage change in your personal productivity due to Al coding tools.
39% [svB [l Mid-market Enterprise
40 34% 34%
30
20
10
0
Average increase n=1,048
- J

While nearly all developers are seeing productivity gains, the data reveals two distinct realities. Smaller
teams are sprinting ahead with accessible tools to boost raw speed, while enterprises are taking a more
measured approach, focusing on governance and long-term code health.

sonar.com returnto TOC @ 4457

https://www.sonarsource.com/

State of Code Developer Survey report 2026

The trade-off between speed and quality

It's clear that smaller organizations are capitalizing on the immediate velocity Al offers. Beyond the
higher average productivity gains, 43% of SMB developers report being "much more productive"
personally, compared to only 36% of enterprise developers. This focus on speed translates directly
to business outcomes, with smaller organizations more likely to report gains in time-to-market (76 %,
compared to 67% of enterprise developers).

e N
Smaller organizations are more likely to report gains in time-to-market
What impact has Al-generated or assisted code had on your team / company for each of the following? / Choices:
Very positive / Somewhat positive impact
o [smB [l Mid-market Enterprise
80 76%
70% 67%
60
40
20
0
Positive impact on time to market n=1,149
N J
However, enterprises are seeing a different upside. While they report lower raw speed gains, they are
more likely to report improvements in code quality and maintainability (almost 20% more often than
SMB). This suggests that larger organizations are leveraging Al to improve the quality of their massive
existing codebases.
e N
Enterprises report higher positive impacts on code quality and code maintainability
What impact has Al-generated or assisted code had on your team / company for each of the following? | Choices:
Very positive / Somewhat positive
B svB [Mid-market Enterprise
80
60% 61% . 60%
60 52% 50% 56%
40
20
0
Positive impact of Al on code quality Positive impact of Al on code maintainability n=1,149
N J

sonar.com returnto TOC @ 45/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

The benefits of enterprise governance

Enterprises appear to be managing Al risks through rigorous governance. They are statistically more
concerned about the exposure of sensitive data (61%).

4 ™
Enterprises are more concerned about the M svB [l Mid-market Enterprise
exposure of sensitive data when it comes to 80
Al-generated or assisted code 61%

60 54% 54%
How concerned are you about each of the following
when it comes to Al-assisted or generated code today?
| Choice: Extremely concerned / Very concerned 40

20

0

Exposure of sensitive company or customer data
n=1,149
N J/

This is driving them to implement stricter controls:

o Formal policies: Enterprises are more likely to have well-defined, distinct guidelines or automated
checks specifically for Al-generated code (18%) compared to SMBs (12%).

Enterprises are more likely to have distinct guidelines and / or automated checks specifically for
Al-generated code

Does your [org] have specific guidelines, policies, or quality gates for the review, testing, and acceptance of Al-
generated code that differ from those for [dev-written] code?

[svB [l Mid-market Enterprise

20 18%
E 12%
10%

10

5

0

We have well-defined, distinct guidelines and/or automated checks specifically for Al-generated code n=1,149
AN J/

sonar.com returnto TOC @ 46/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

o Compliance rigor: When it comes to compliance reviews for Al-generated code, 39% of enterprise
respondents say they are more rigorous now, compared to only 28% of SMBs.

4 N
Enterprises are the most rigorous and pay more attention to Al-generated code when it
comes to compliance
Has there been a change in how you approach the following as a result of the increasing use of Al coding tools?
30% [svB [l Mid-market Enterprise
40
30 28% 27%
20
10
0
We are more rigorous in our reviews and pay more attention to this due to Al-generated code n=1,149
- /

sonar.com returnto TOC @ 47[57

https://www.sonarsource.com/

State of Code Developer Survey report 2026
Small and medium businesses report more negative impacts
Another strong indicator that enterprises are getting better ROl on Al? SMBs often report up to 11
percentage points higher negative impacts due to Al. Perhaps because they may lack the formal
guardrails of larger orgs, they experience more acute friction managing Al code.

SMBs consistently report higher negative impacts due to Al
To what extent do you agree with each of the following statements as it relates to the use of Al coding tools
and Al-assisted or generated code? / Choices: Completely agree / Somewhat agree
@ sve @ Mid-market Enterprise %
I 67
Al often produces code that looks correct but isn't reliable I 63
56*
. . . . 1 ——— 62
It requires a lot of effort (in prompting, fixing, etc.) to get ————————————S
good code from Al 58
I 47
Too many lines of code are being generated with Al I 40
42
. . . — 43
Al makes completing complex coding tasks more difficult S 40
because it often lacks context / understanding 40
- . . . I 4
Reviewing Al-generated or assisted code is more time S 36 °
consuming than developer-written code 35
. - .. . I 36
Spend too much time reviewing and fixing code written by D 35
other developers who rely on Al to write code 35
I 37
Spend too much time fixing poorly-written Al code I 36
36
IS 38
Spend too much time reviewing Al code I 34
34
IS 36
Al makes it harder to ship confidently to production — 32
33
— 37 *
Al code is poorer quality than developer-written code I 30
27
. . I 20
Al delays releases because of extra review and fixes [r—",
required 19
I 15
Al complicates coding and slows me down I 13
14
n=1,149; *indicates statistical significance
sonar.com returnto TOC @ 48/57

https://www.sonarsource.com/

State of Code Developer Survey report

2026

The most frequently reported negative impact of Al on code is that it looks correct but isn't reliable.

Notably, 67% of SMB developers agree with that statement, compared to 56% of enterprise developers.

Perhaps most telling, SMB developers are significantly more likely to cite "correcting or rewriting code

created by Al coding tools" as a top source of toil work (28%) compared to enterprise developers (17%).

e
SMB developers are more likely to cite B sve [l Mid-market Enterprise
"correcting or rewriting the code created by Al 8%
(]
coding tools" as one of the top sources of toil 30
work 20%
L 20 17%
Thinking about your current workflows, what are
your biggest sources of "toil work" that hinder / sap
productivity or increase frustration in your current role? 10
0
Correcting or rewriting code created by Al coding tools
n=1,149
N
This indicates that while SMBs are moving fast, they are paying for it in technical debt and rework.
They are also less likely to use automated code review tools to check Al-generated code, which may
exacerbate the issue.
The data paints a picture of two different trajectories. SMBs are volume-driven adopters using low-
friction tools to boost personal speed, but they face increased developer toil correcting unreliable
output. Enterprises are deliberate, risk-averse adopters prioritizing data security and systemic
improvements.
The takeaway

While Al adoption is high across the board, the experience of that adoption is clearly different.
Enterprises are investing in the process and governance to manage Al-generated code, which
leads to higher-quality, more maintainable code. SMBs are reaping the immediate speed benefits
but are feeling the pain in verification and rework. This highlights a critical lesson for everyone:
generating code faster is only half the battle. The real value comes from being able to trust and

verify that code efficiently.

sonar.com return to TOC @

49/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

SonarQube users get more ROI out of Al coding tools than
other developers

If there's one thing this research has shown, it's that Al does not fix a broken system. It simply amplifies
what is already there.

If you have a high-trust, well-architected system with a robust testing and verification platform, Al will
amplify your efficiency. But if you have a low-trust, chaotic system, Al will only amplify that chaos. It will
give you more low-quality, untrusted, "looks correct but isn't" code, faster than ever before.

In light of this, it's no surprise that developers not using SonarQube are 80% more likely to report that
Al adoption led to a higher frequency of outages and incidents, and 46% more likely to say Al had a
negative impact on their overall code quality.

Non-users of SonarQube are more likely to report negative impact of Al on
outage frequency and code quality

What impact has Al-generated or assisted code had on your team / company for each of the
following? | Choice: Very / somewhat negative impact

[sonarQube users [l Non-users

16%
46%
12% fCEe
1%
8%
80%
7%
4%

0%
Negative impact on frequency of Negative impact on code quality
outages/incidents

This data points directly to the solution to the "Al accountability crisis." When teams adopt Al to "vibe"
(generate code) alongside a strong, independent way to "verify" (check that code), they aren't just
getting productivity gains—they're actively decreasing their risk.

sonar.com return to TOC @

https://www.sonarsource.com/

State of Code Developer Survey report

SonarQube users find Al more effective for core tasks

The data shows that SonarQube users aren't just avoiding the pitfalls; they're actively getting more
value from their Al tools. We saw a clear pattern: SonarQube users consistently rated Al's effectiveness
19% higher for assisting in the creation of new code.

SonarQube users consistently report higher levels of Al effectiveness assisting
in the development of new code

How effective are Al coding tools for each of the following tasks you or your team / company
has used them for? | Choice: Extremely / Very Effective

[sonarQube users [l Non-users
80%
60%
40%

20%

0%

Effectiveness assisting in the development of new code

When developers have a trusted partner like SonarQube providing real-time, actionable code
intelligence, they can use Al tools with more confidence. They're not just "vibe coding" and hoping for
the best; they're verifying as they go, which makes the whole process more effective.

Better effectiveness leads to better strategic outcomes

This increased effectiveness isn't just a nice to have. It translates directly into the strategic outcomes
that engineering leaders and ClOs care about: higher quality, lower risk, and reduced costs.

When we asked about the positive impacts of Al adoption, Sonar users were:

24% more likely to report a positive impact on vulnerability rates.
20% more likely to see a positive impact on defect rates.

18% more likely to see a reduction in rework and patch costs.
16% more likely to report a positive impact on technical debt.

12% more likely to report a positive impact on overall code quality.

sonar.com returnto TOC @ 51/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

Sonar users report higher positive impact of Al on the following activities

What impact has Al-generated or assisted code had on your team / company for each of the following?

[sonarQube users [l Non-users

12%
16A:

62% °
22 52‘7 18 * 0 24%
(] 0 o
45% 47/° o 44%
40% 37% 39%
31%

Higher code Lower Lower rework/ Lower defect Lower
quality technical debt patch costs rates vulnerability rates

This data provides a clear pathway to help developers adopt Al coding tools safely and build code
everyone can trust. Simply generating code faster doesn't lead to real productivity if it creates a
massive verification bottleneck or, worse, introduces new risks that show up as production outages.
Real productivity comes from speeding up the entire development lifecycle.

SonarQube users are seeing better results because they have the "verify" part of the equation built in.
By integrating automated code review for both developer-written and Al-generated code directly into
their workflow, they catch issues earlier, reduce the burden of manual review, and ensure that all code
meets their quality and security standards before it ever gets to production.

Ultimately, Al is a powerful collaborator, but it's not infallible. The organizations winning with Al are the
ones who treat it that way—empowering their teams to vibe, then verify.

sonar.com returnto TOC @ 52/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

Appendix: About our survey
demographics

To understand the current state of software development, we surveyed 1,149 technology professionals
from around the globe. We wanted to ensure our data reflected the reality of modern engineering teams,
so we gathered insights from a diverse mix of developers, managers, and executives working across a
wide range of industries and company sizes.

Here's a closer look at who we surveyed.

A global perspective

4 N
Region
Middle East / Africa LATAM
1% 7%
APAC
North America 13%
52%

Europe
27%

N J

Our respondents come from all over the world, giving us a truly global view of the developer landscape.
While just over half (52%) are based in North America, we have significant representation from Europe
(27%) and the APAC region (13%), with the remainder from Latin America, the Middle East, and Africa.

sonar.com returnto TOC @ 53/57

https://www.sonarsource.com/

State of Code Developer Survey report

2026

Experienced and hands-on

We tapped into professionals across a wide band of experience and seniority.

Seniority President or C-level Executive - Entry-level Individual Contributor
i« / 1%
Vice President or SVP Mid-level Individual
6% Contributor
Director or Senior Director / 10%
17%
Manager or Senior Manager Senior, Lead, or Principal IC
19% 43%
N
We also captured the perspective of engineering leadership. Nearly half of our sample holds a
management title, ranging from Managers and Directors to VPs and C-level executives.
p
Coding involvement Only manages developers
15%
Manages developers
& writes code
57%
Only writes code
28%
-

When it comes to their daily work, the vast majority are still deep in the code.

e 57% of respondents both write code and manage developers.
o 28% are focused solely on writing code.

» 15% focus exclusively on managing developers.

This mix ensures our findings reflect both the tactical realities of writing code and the strategic
challenges of managing it.

sonar.com return to TOC @

54[57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

Organizations of all sizes

4 N
Company size
SMB
. 29%
Enterprise
43%
Mid-market
27%
- J

We wanted to understand how development happens at all scales, and our demographics reflect
that. Nearly half of our respondents (43%) work at enterprises with over 1,000 employees. Another
27% work at mid-market companies (201-1,000 employees), while the remaining 29% work at SMB
organizations (1-200 employees).

Diverse industries and applications

While the majority of our respondents (62%) work in the technology sector (software, hardware, and
services), we also heard from professionals in:

Financial Services & Insurance (9%)

Healthcare & Life Sciences (5%)

Retail & E-commerce (5%)

o Manufacturing, Government, and other key sectors.

The type of software they are building is just as varied. About one-third (28%) are building customer-
facing web or mobile apps, while others are focused on commercial software (29%), custom client
applications (19%), and internal tools (18%).

sonar.com returnto TOC @ 55/57

https://www.sonarsource.com/

State of Code Developer Survey report 2026

Analyst's note on data interpretation

Percentages in this report may not sum to exactly 100% due to rounding or multi-select questions. All
data is based on the total sample of 1,149 respondents unless otherwise noted.

sonar.com returnto TOC @ 56/57

https://www.sonarsource.com/

sonar.com ©2026, SonarSource Sarl

https://www.sonarsource.com/

