
State of Code
Developer Survey report

2026

sonar.com 2/57

2026State of Code Developer Survey report

Introduction 03

About this report 04

How developers are (really) using AI 05

Vibe check: Do developers trust AI? 09

The top AI tools, and how they’re used 15

The second act of AI: Agents 20

Meet the new developer toil 25

The tricky relationship between AI and code security 29

Trying not to expand technical debt 34

AI coding and the experience gap 38

How enterprises and small businesses are approaching AI 44

SonarQube: The essential verification layer for AI code 50

Appendix: About our survey demographics 53

Table of Contents

https://www.sonarsource.com/

sonar.com 3/57

2026State of Code Developer Survey report

Introduction
Sonar analyzes over 750 billion lines of code each day, which gives us a unique
understanding of code. This year, we kicked off a new report series called the State of
Code to share some of our knowledge with developers and technology leaders more
broadly.

We’ve already written reports on code reliability, security, maintainability, and the
specific coding personalities of leading LLMs. Those reports focused primarily on the
code itself and the models creating it. Next we wanted to expand that view to include the
state of code from the perspective of the people doing the work—the developers writing
code and collaborating with AI to build it.

Specifically, we wanted to get a read on what is changing for them. As AI rapidly
shifts the mechanics of coding, we need to understand the on-the-ground reality—the
efficiencies, the frustrations, and the new workflows emerging. To ensure we add real
value to the industry narrative, we designed this study to build upon the findings in
other leading developer surveys and to answer the pressing questions we still had after
reading them.

After surveying more than 1,100 developers, we saw a critical new narrative emerging.
Simply put, the explosion in AI-generated code hasn't led directly to massive and much-
hyped productivity gains yet. Instead, a verification bottleneck has emerged, creating
a whole new set of challenges. As we cover this and other findings, we’ll explore how
the AI-coding shift is manifesting across software engineering organizations across the
world, and how they are adapting to address it.

return to TOC ↑

https://www.sonarsource.com/
https://www.sonarsource.com/research/
https://www.sonarsource.com/research/
https://www.sonarsource.com/the-state-of-code-reliability.pdf
https://www.sonarsource.com/the-state-of-code-security.pdf
https://www.sonarsource.com/the-state-of-code-maintainability.pdf
https://www.sonarsource.com/the-coding-personalities-of-leading-llms.pdf

sonar.com 4/57

2026State of Code Developer Survey report

About this report
The 2026 State of Code Developer Survey was a quantitative online survey conducted
among professional software developers. Fieldwork for the survey ran throughout
October 2025.

The final sample size for the study included 1,149 responses, distributed globally. All
respondents were 18 years or older, employed full-time or self-employed in a technology
role (the vast majority worked in software engineering, with some others in fields related
to IT ops, data science, or product management), write code or manage developers
using at least one programming language, and have used AI as part of their job within
the past year.

Further details about the report’s demographic makeup are available in the appendix.

return to TOC ↑

https://www.sonarsource.com/

sonar.com 5/57

2026State of Code Developer Survey report

Average share of AI-assisted or generated code committed by developers
What % of the code you committed or contributed was / will be generated or significantly assisted by AI tools?

How developers are (really) using AI
72% of developers who have tried AI use it every day
AI-assisted coding is officially a standard part of the developer workflow. 72% of developers who have
tried AI coding tools now use them every day.

Developers also report that 42% of their code is currently AI-generated or assisted—a share that they
predict will increase by over half by 2027, and up from only 6% in 2023.

n=979

20272026202520242023

65%
55%

42%

19%6%

72% of developers who have tried AI use it every day
How frequently (do you / your team or company) use AI coding tools in your development workflow?

Occasionally

Weekly

Multiple times a day

Daily

6%

7%

42%

30%

15%

n=1,148

A few times a week

72%
every day

return to TOC ↑

https://www.sonarsource.com/

sonar.com 6/57

2026State of Code Developer Survey report

And AI is not just for side projects and experimentation. Developers are using AI across the gamut of
software projects, from prototypes (88%) and internal, non-critical production software (83%) all the
way to customer-facing applications (73%) and even mission-critical services (58%).

Developers are using AI across the gamut of software projects
Thinking about your team / company, which of the following types of work involves the use or assistance of AI?

Prototypes, experiments,
proofs of concept

Production software
for internal, non-critical

workflows

Production software
for customer-facing

applications

Production software
for business-critical or

mission-critical services

n=1,149

return to TOC ↑

https://www.sonarsource.com/

sonar.com 7/57

2026State of Code Developer Survey report

Use cases, and the gap between usage and effectiveness
Just because AI is used everywhere doesn't mean it's effective evenly. When we look at how
developers are using AI versus how effective they find it for those specific tasks, a clear gap sometimes
emerges. In a perfect world, adoption would increase more or less linearly with effectiveness. But
in practice, we see use cases where developers have reported low effectiveness but higher rates of
adoption.

Understanding AI use cases
For which of the following tasks is your team /
company using AI coding tools?

How effective are AI coding tools for each of
the following tasks you or your team / company
has used them for?

Use case effectiveness % rated extremely / very effective0% 100%

10
0%

Use case Effectiveness ↓ Adoption

A Writing documentation 74% 74%

B Explaining or understanding existing code 66% 78%

C Vibe coding / creating new projects with mostly AI-generated code 62% 48%

D Generating tests 59% 75%

E Researching technical solutions or exploring APIs/libraries 59% 74%

F Translating code from one language to another 58% 50%

G Assisting development of new code 55% 90%

H Code review 47% 55%

I Debugging code 44% 65%

J Refactoring or optimizing existing code 43% 72%

K Adding or updating functionality in existing code 42% 76%

U
se

 c
as

e
ad

op
tio

n
%

 w
ho

 u
se

n=1,149

return to TOC ↑

https://www.sonarsource.com/

sonar.com 8/57

2026State of Code Developer Survey report

The best example of this is also the most common use case for AI: assisting with new code development
(90% of developers). Only 55% of those users rated AI as "extremely or very effective" for that task.

Refactoring or optimizing existing code shows a similar effectiveness gap: while 72% of developers
report using AI tools for this use case, only 43% attest to its effectiveness in that task.

Where AI really shines
The data shows AI tools are most effective at tasks that involve experimentation or working with what's
already there.

The tasks where AI is most effective include:

•	 Writing documentation (74% effective)

•	 Explaining or understanding existing code (66% effective)

•	 Vibe coding / green-field prototyping (62% effective)

•	 Generating tests (59% effective)

Developers have embraced AI as a daily partner, but they're finding it's a much better "explainer" and
"prototyper" than it is a "maintainer" or "refactorer"—at least for now. It's highly effective at generating
new things (docs, tests, new projects) but struggles more with the complex, nuanced work of modifying
and optimizing existing, mission-critical code.

The takeaway
Developers are pragmatic: they’ve fully embraced AI as a daily assistant, using it to write
documentation and generate tests. But they also know its limits, showing less confidence in its
ability to handle complex, existing code. This gap between high usage and selective effectiveness
isn't just about features; it's about confidence. When the stakes are high, how much do developers
really trust the code AI generates? This brings us to the core of the issue: developer trust.

return to TOC ↑

https://www.sonarsource.com/

sonar.com 9/57

2026State of Code Developer Survey report

96% of developers don’t fully trust that AI-generated code is functionally correct
To what extent do you agree with each of the following statements as it relates to the use of AI coding tools
and AI-assisted or generated code? | Choice: I trust that AI code is functionally correct

Vibe check: Do developers trust AI?
96% of developers don’t fully trust that AI-generated code is
functionally correct
It's no secret that AI is changing development. Our study found that developers are seeing real benefits,
reporting an average personal productivity boost of 35%. On top of that, more than half (54%) say
they’re more satisfied with their job as a result of AI.

And while 82% of developers agree AI helps them code faster, and 71% say it helps solve complex
problems more efficiently, this speed creates a new challenge: a trust gap. 96% of developers don’t
fully trust that AI-generated code is functionally correct.

Completely agree

Somewhat agree

Completely disagree

Somewhat disagree

4%

25%

17%

31%

23%

n=1,149

Neither agree nor disagree

return to TOC ↑

https://www.sonarsource.com/

sonar.com 10/57

2026State of Code Developer Survey report

This verification step isn't trivial. While AI is supposed to save time, developers are spending a
significant portion of that saved time on review. Nearly all developers (95%) spend at least some
effort reviewing, testing, and correcting AI output. A majority (59%) rate that effort as "moderate" or

"substantial."

In fact, 38% of developers say reviewing AI-generated code requires more effort than reviewing code
written by their human colleagues. (This contrasts with only 27% who say it requires less effort.)

The verification bottleneck
Given our finding in the prior section that 96% of developers have a hard time trusting that AI-generated
code is functionally correct, you would think that verification of AI code is widespread. However, this is
not the case: only 48% of developers always check their AI-assisted code before committing.

48% of developers always check their AI-assisted code before committing
To what extent do you agree with each of the following statements as it relates to the use of AI coding tools and AI-
assisted or generated code? | Choice: I always check my AI-generated or assisted code before committing it

Completely disagree

Somewhat disagree

Completely agree

Somewhat agree

3%

11%

48%

27%

11%

n=1,149

Neither agree nor disagree

48%
completely
agree

return to TOC ↑

https://www.sonarsource.com/

sonar.com 11/57

2026State of Code Developer Survey report

Why is it so much work? 61% agree that "AI often produces code that looks correct but isn't reliable."
That's a critical finding—it means AI code can introduce subtle bugs that are harder to spot than typical
human errors. The same percentage (61%) agree that it "requires a lot of effort to get good code from
AI" through prompting and fixing.

61% of developers agree that AI often produces code that looks correct but isn't reliable
To what extent do you agree with each of the following statements as it relates to the use of AI coding tools and AI-
assisted or generated code? | Choice: AI often produces code that looks correct but isn't reliable

61% of developers agree that it requires a lot of effort to get good code from AI
To what extent do you agree with each of the following statements as it relates to the use of AI coding tools and AI-
assisted or generated code? | Choice: It requires a lot of effort (in prompting, fixing, etc.) to get good code from AI

Completely agree

Completely agree

Somewhat agree

Somewhat agree

Completely disagree

Completely disagree

Somewhat disagree

Somewhat disagree

Neither agree nor disagree

Neither agree nor disagree

17%

19%

45%

41%

5%

7%

15%

19%

19%

13%

 n=1,149; Percentages are rounded

61%
agree

61%
agree

return to TOC ↑

https://www.sonarsource.com/

sonar.com 12/57

2026State of Code Developer Survey report

AI impact is mostly seen in developer productivity and time-to-market, but there's room for growth in
multiple other aspects
What impact has AI-generated or assisted code had on your team / company for each of the following?

Where AI's impact is felt (and where it's not)
Developers are clearly shipping code faster, but whether this consistently translates to better outcomes
is less clear.

While 70% say AI has positively impacted their time-to-market, less than half (47%) say it's had a
positive impact on the end-user experience or on reducing technical debt. This makes sense: if you're
shipping code that looks right but isn't reliable, you're not improving the user's experience or the long-
term health of your codebase.

Developer productivity

Time-to-market

Feature or fix release frequency

Code quality

Code maintainability

End-user experience

Technical debt

Rework / patch costs

Defect rates

Vulnerability rates

Frequency of outages / incidents

Severity of outages / incidents 24%

25%

34%

39%

42%

47%

47%

56%

58%

60%

70%

89%

Impact of AI use on key activities

Very positive impact Somewhat positive impact

% Total

4 20

22

29

33

36

39

37

44

45

46

51

63

4

5

6

7

8

10

11

13

13

19

26

n=1,149

SonarQube users report stronger positive impacts on code quality, technical debt, rework costs, defects,
and vulnerabilities than non-users. This suggests that having a systematic verification process in place
is key to turning AI's speed into real-world quality improvements.

return to TOC ↑

https://www.sonarsource.com/

sonar.com 13/57

2026State of Code Developer Survey report

Code quality review & validation is the most important skill for developers in the AI era
Which of the following skills will be most important for developers to have in the evolving AI-assisted or generated
coding environment?

A new set of skills and concerns
This new "verify" step is also redefining what it means to be a developer. When we asked what skills
will be most important in the AI era, the number one answer was "reviewing and validating AI-generated
code for quality and security" (47%). This was followed by "efficiently prompting AI tools" (42%).

Reviewing and validating AI-generated code for quality
and security

Efficiently prompting AI tools to generate code that
meets requirements

Translating domain knowledge into code requirements

Architecting complex systems and integrations

Identifying and mitigating security risks introduced by
AI-generated code

Creative problem-solving and innovation

Maintaining system performance, reliability, and
efficiency in production environments

Shaping coding standards and governance

Integrating AI outputs into workflows and toolchains

Refactoring and debugging AI-generated code

Building resilient systems

Collaborating and mentoring other developers

47%

42%

27%

25%

24%

23%

23%

19%

17%

16%

11%

10%

n=1,149

return to TOC ↑

https://www.sonarsource.com/

sonar.com 14/57

2026State of Code Developer Survey report

The takeaway
It's clear that this new verification bottleneck is the central challenge in the age of AI-assisted
coding. But one critical component of code review is knowing the provenance of the code.
This raises a critical question: which code generation tools are even being used, and how are
developers accessing them? This leads us to another key finding: the rapid, often ungoverned,
sprawl of AI tools.

Ultimately, AI is speeding up code generation, but it's also created a bottleneck at the verification stage
of software development, with more work now required to review code.

return to TOC ↑

https://www.sonarsource.com/

sonar.com 15/57

2026State of Code Developer Survey report

GitHub Copilot and ChatGPT are the most widely used tools for software development tasks
In the past year, which of the following AI coding tools or AI features have you or your team / company used for
software development tasks?

n=1,149

The top AI tools, and how they’re used
Copilot and ChatGPT lead the field
AI adoption isn't just happening; it's already starting to coalesce around favorites. The two most
dominant tools, GitHub Copilot and ChatGPT, are used by 75% and 74% of developers, respectively,
with Claude following at 48%.

GitHub Copilot

ChatGPT

Claude / Claude Code

Gemini / Duet AI

Cursor

Perplexity

OpenAI Codex

JetBrains

Amazon Q Developer

Windsurf

Others

75%

74%

48%

31%

21%

21%

17%

12%

8%

return to TOC ↑

37%

37%

https://www.sonarsource.com/

sonar.com 16/57

2026State of Code Developer Survey report

The average development team uses four different AI tools
Based on aggregated answers to the following question: In the past year, which of the following AI coding
tools or AI features have you or your team / company used for software development tasks?

20

Pe
rc

en
ta

ge
 o

f t
ea

m
s

(%
)

n=1,149

1
0

5

10

15

2 3 4 5 6 7 8 9 10

Number of AI tools used

Frequency

Average: 4

But, the data reveals a complex and fragmented picture: on average, development teams juggle four
different AI tools.

For engineering leaders, this means that while AI is boosting productivity, it’s also introducing a “bring
your own AI” (BYOAI) culture that’s running ahead of official governance.

return to TOC ↑

https://www.sonarsource.com/

sonar.com 17/57

2026State of Code Developer Survey report

The personal account problem
It also turns out that many of the tools developers are using aren’t fully approved by their workplaces.
Across the top 10 AI tools, our data shows that 35% of developers are accessing them through personal
accounts rather than work-sanctioned ones.

Over 50% of developers use ChatGPT through personal accounts while 78% use GitHub Copilot
through work accounts
In the past year, how have you personally used each of the following AI coding tools or AI features for software
development tasks as part of your work?

Through personal account Through work-sanctioned account

Perplexity

ChatGPT (for coding-related tasks, e.g. generation,
debugging, explanation)

Google Gemini Code Assist / Duet AI (in Google Cloud, IDEs)

Claude / Claude Code

Open AI Codex

Command-line AI coding tools

Jetbrains AI Assistant (or similar AI features in
JetBrains IDEs)

Cursor (AI-native IDE)

Amazon Q Developer (formerly CodeWhisperer)

GitHub Copilot / Copilot Chat

n=1,147; bases vary

63%

52%

40%

36%

35%

28%

27%

17%

17%

31%

47%

55%

53%

52%

57%

58%

64%

72%

78%

33%

return to TOC ↑

https://www.sonarsource.com/

sonar.com 18/57

2026State of Code Developer Survey report

ChatGPT, Claude and JetBrains are favorites among SMBs
In the past year, which of the following AI coding tools or AI features have you or your team / company used
for software development tasks?

SMB Mid-market Enterprise

%
GitHub
Copilot

PerplexityChatGPT OpenAI
Codex

Claude JetBrainsGemini /
Duet AI

Amazon QCursor Command-
line AI

73 76 79* 75
69

57*
47 42

34
40 37

31 33
28 23 23 19 22 22 20 21*

15 15 10 13 14 16* 12 9

76

n=1,149; *indicates statistical significance

ChatGPT is a perfect example. While 74% of developers have used it in the past year, 52% of those
users are accessing it via their personal accounts. This trend is even more pronounced with tools like
Perplexity, where 63% of its users are logging in via personal accounts.

This shadow adoption creates a massive blind spot for security and compliance. When developers
use personal accounts, they might be feeding sensitive company or customer data into public models,
creating serious risks.

Interestingly, this isn't a universal problem. Some tools are clearly being adopted through official
channels. GitHub Copilot and Amazon Q Developer, for example, show much lower personal account
use (17% for both), suggesting a more formal, top-down rollout. And Cursor is similar, showing only 27%
in personal account use compared to 64% on work-sanctioned accounts.

Who is using which tools?
The data also shows that tool choice varies based on company size and developer experience.

•	 Company size: Smaller companies (SMBs) are more likely to be using ChatGPT, Claude, JetBrains,
and command-line AI tools than their larger counterparts.

return to TOC ↑

https://www.sonarsource.com/

sonar.com 19/57

2026State of Code Developer Survey report

This data paints a clear picture: developers aren't waiting for permission. They are actively
experimenting with a wide array of tools to get their work done, often on their own personal accounts.
For engineering leaders, the challenge isn't if AI will be used, but how to manage the new risks it
introduces without slowing down the clear productivity gains.

Cursor, Perplexity, OpenAI Codex are favored by junior developers
In the past year, which of the following AI coding tools or AI features have you or your team / company used
for software development tasks?

≤ 10 years 11-20 years ≥ 20 years

%
GitHub
Copilot /
Copilot
Chat

PerplexityChatGPT
(for coding-
related
tasks, e.g.,
generation,
debugging,
explanation)

OpenAI
Codex

Claude /
Claude
Code

JetBrains
AI Assistant
(or similar
AI features
in JetBrains
IDEs)

Google
Gemini
Code Assist
/ Duet AI
(in Google
Cloud, IDEs)

Amazon Q
Developer

Cursor
(AI-native
IDE)

Command-
line AI
coding
tools

71
78* 77 72 71

48 47 49
40

35 34 36*
29 25 25* 21 17

23* 21 17 21* 17*
11 11 13 13 13 12 12

76

n=1,149; *indicates statistical significance

The takeaway
This fragmented, "bring your own AI" culture highlights the first major wave of AI adoption:
developers are seizing on assistant tools to speed up individual tasks. But this is just the beginning.
As developers look to move beyond simple code generation to full task automation, they're
turning to agentic AI. We'll explore this next, looking at how developers are beginning to use these
autonomous agents and what it means for the future of the development lifecycle.

•	 Experience level: Junior developers are more likely to be using a more varied set of tools, including
Cursor, Perplexity, OpenAI Codex, and JetBrains AI.

return to TOC ↑

https://www.sonarsource.com/

sonar.com 20/57

2026State of Code Developer Survey report

The second act of AI: Agents
64% of developers have started to use AI agents
A key finding from this study is that agentic AI is moving from experiment to everyday tool. 25%
of developers report using agentic AI tools regularly in their workflows, and another 39% have
experimented with them. This means a combined 64% of developers have already started using these
advanced agents.

Agentic use cases match AI’s natural strengths
The data on agentic AI usage shows a strong focus largely on tasks where we know AI naturally
performs reasonably well. Among the 64% of developers using agentic AI, here are the top use cases:

•	 Creating code documentation (68% of developers)

•	 Automated test generation and execution (61% of developers)

•	 Automated code review (57% of developers)

On the other end of the spectrum, the least common use case is security vulnerability patching or
remediation, with only 28% of developers using agents for this task.

64% of developers have started to use AI agents
Is your team / company currently using, or have you experimented with, AI agents in your software
development work?

No, and we are not
currently exploring or

planning to use AI agents

Yes, we use AI agents
regularly in our
workflow

Yes, we have
experimented with
AI agents, but
they are not yet in
regular use

11%

25%

39% 21%

n=1,149

No, but we are actively
exploring or planning to

use AI agents

64%
using AI
agents

Don't know / Not sure

3%

return to TOC ↑

https://www.sonarsource.com/

sonar.com 21/57

2026State of Code Developer Survey report

These popular uses line up well with their perceived effectiveness. 70% of developers rated creating
code documentation as a somewhat or very effective agentic AI task. 59% of developers rated
automated test generation as somewhat / very effective, and automated code review received 52%,
suggesting that developers are finding real value in the tasks they're automating most often.

Understanding agentic
AI use cases
For which of the following tasks is your team /
company using AI agents?

How effective are AI agents for each of the
following tasks you've used them for?

Use case effectiveness % rated extremely / very effective0% 100%

10
0%

Use case Effectiveness ↓ Adoption

A Creating code documentation 70% 68%

B Automated test generation and execution 59% 61%

C Vibe coding apps that create code based on conversational language 59% 46%

D Project planning, task breakdown, or requirements analysis 54% 45%

E Automated code review 52% 57%

F Automated code generation for entire features or modules 51% 48%

G Automated infrastructure setup or management 51% 29%

H Automated code refactoring, modernization, or optimization 49% 48%

I Security vulnerability patching or remediation 48% 28%

J Automated debugging and issue remediation 47% 44%

K Automated deployment pipeline configuration or management 47% 33%

U
se

 c
as

e
ad

op
tio

n
%

 w
ho

 u
se

n=737

return to TOC ↑

https://www.sonarsource.com/

sonar.com 22/57

2026State of Code Developer Survey report

Where different teams see success
While documentation is the clear all-around winner, the data reveals some fascinating, specialized
bright spots for different groups.

For example, developers at small-to-medium businesses (SMBs) are finding success with generative
tasks. 67% of developers at SMBs reported that AI agents were effective for vibe coding tasks
(using conversational language to create apps). This is significantly higher than peers at enterprise
organizations (52%), suggesting agents are a powerful force multiplier for smaller, agile teams. Other
bright spots for SMBs include project planning, task breakdown, or requirements analysis (63% of
developers rated AI as effective) and, interestingly, security vulnerability patching or remediation (57%).

In between SMBs and enterprises, we find that developers at midsized organizations are also seeing
success in key areas related to infrastructure setup. In particular, more developers report effectiveness
for use cases like automated infrastructure setup or management (62%) and automated deployment
pipeline configuration or management (56%).

Use cases where AI agents offer more value to SMBs
How effective are AI agents for each of the following tasks you’ve used them for?

n=737

Vibe coding apps that create
code based on conversational
language

Project planning, task
breakdown, or requirements
analysis

Security vulnerability patching
or remediation

0

20

40

60

80

SMB Mid-market Enterprise

67%
62%

52%

63%

50% 50%

57%

48%
44%

return to TOC ↑

https://www.sonarsource.com/

sonar.com 23/57

2026State of Code Developer Survey report

AI agent use cases that work (and don't work) for different company sizes
How effective are AI agents for each of the following tasks you’ve used them for?

%

Creating code documentation

Vibe coding apps that create code based on
conversational language

Automated test generation and execution

Project planning, task breakdown, or requirements
analysis

Automated code review

Automated code generation for entire features or modules

Automated infrastructure setup or management

Automated code refactoring, modernization, or
optimization

Security vulnerability patching or remediation

Automated debugging and issue remediation

Automated deployment pipeline configuration or
management

69
70
70

67
62

52

57
61

60

63

50
50

51
52
52

55
50

49

49
62

46

50
45

50

57
48

44

48
54

43

42
56

44

n=737

SMB Mid-market Enterprise

return to TOC ↑

https://www.sonarsource.com/

sonar.com 24/57

2026State of Code Developer Survey report

The takeaway
It's clear that agentic AI is beginning to successfully automate key parts of the development
process, with a quarter of developers already using it regularly for tasks like documentation and
test generation. But does automating these specific jobs mean developers are finally free from
frustrating, repetitive work? Despite automating these jobs, AI might not be eliminating toil, but
simply changing its shape.

return to TOC ↑

https://www.sonarsource.com/

sonar.com 25/57

2026State of Code Developer Survey report

Meet the new developer toil
The illusion of toil savings
As mentioned in the “Vibe check: Do developers trust AI?” chapter, developers are seeing higher levels
of productivity when using AI coding tools. They also reported toil reduction: 75% of developers said
that AI reduces their “toil work”—tasks that hinder developer productivity or increase frustration.

But under the surface, the picture becomes more complicated.

When asked about the portion of their work week assigned to tasks associated with toil (e.g. managing
technical debt, debugging legacy or poorly documented code), developers reported spending nearly a
quarter of their time on toil work.

Interestingly, the amount of time spent on toil (an average of 23-25%) stays almost exactly the same for
developers who use AI coding tools frequently and for those who use them less often.

return to TOC ↑

75% of developers believe that AI reduces amount of time spent on toil work
To what extent do you agree with each of the following statements as it relates to the use of AI coding tools
and AI-assisted or generated code? | Choice: AI reduces the amount of time I spend on toil work

n=1,149

Not applicable

Completely disagree

Somewhat disagree

Completely agree

Somewhat agree

1%

2%

8%

24%

51%

14%

Neither agree nor disagree

75%
agree

https://www.sonarsource.com/

sonar.com 26/57

2026State of Code Developer Survey report

The great toil shift
It turns out that while developers spend less time on certain toil tasks, AI is not eliminating toil entirely; it
is simply shifting its nature. Developers are swapping older frustrations for new ones:

•	 Less frequent AI users are more likely to report toil from tasks like debugging poorly documented
code and understanding existing systems. These are exactly the kinds of problems that AI coding
tools are good at solving.

•	 The most frequent AI users, however, are more likely to see toil in new areas: managing technical debt
and, unsurprisingly, correcting or rewriting code created by AI coding tools.

return to TOC ↑

Time spent on toil
% of work week spent on toil work tasks

n=1,149

0-10% 11-25% 26-40% 41-50% Over 50%
0

20

40

60

Pe
rc

en
ta

ge
 o

f r
es

po
ns

es
 (%

)

Percentage of time spent on toil per week

% of work week spent on toil

Average: 24% of work week

Use AI multiple times a day

Use AI occasionally / weekly

https://www.sonarsource.com/

sonar.com 27/57

2026State of Code Developer Survey report

Toil didn't shrink with AI, it changed flavor: more frequent users of AI are more likely to
report toil in different areas
Thinking about your current workflows, what are your biggest sources of "toil work" that hinder / sap
productivity or increase frustration in your current role?

This data suggests that while AI helps clear away old development hurdles, it creates new ones. We've
accelerated code generation, but that just moves the pressure downstream to code management and
verification.

Teams are doubling down on deterministic review
Developers are already adapting to this new reality. The data shows a strong reliance on static analysis
tools, which are deterministic code review solutions, to manage the surge of new code from AI.

•	 Static analysis tools are widely adopted, with 70% of developers using them.

•	 57% are already applying them to review AI-generated code.

Managing technical debt (e.g., refactoring complex or
outdated code)

Debugging legacy or poorly documented code

Correcting or rewriting code created by AI coding tools

Finding information or understanding existing systems

Managing broken or outdated dependencies

Poorly performing, unreliable, or overly complex
development tools

Profiling and tuning code performance
10%

12%

11%
12%

16%
17%

21%
29%

25%
15%

30%
34%

44%
34%

Use AI multiple times per day Use AI weekly or occasionally Toil based on frequency of AI use

n=626

return to TOC ↑

https://www.sonarsource.com/

sonar.com 28/57

2026State of Code Developer Survey report

How developers use static analysis code review
How is your company or team currently using the following automated code review tool? | Choice: Static
Analysis Tool

There is also a pronounced swing towards applying static analysis review to AI code among enterprise
developers: 60% of them review AI code with static analysis, compared to 51% of SMB developers. This
is likely a side effect of higher investments by enterprises into processes to protect code quality across
their codebases.

This isn't a temporary trend. Looking ahead, developers expect their reliance on these tools to increase.
The perceived value of deterministic, rules-based code review is set to grow from 60% today to 68%
over the next two years.

n=799

To review AI-generated code

To review developer-written
code and AI-generated code

7%

49%

13%

22%

9%

To review developer-
written code

N/A: We don't
use this tool

Not sure

57%
use static
analysis to
review AI code

The takeaway
While AI is successfully changing how developers work, it hasn't reduced the overall burden of
toil. It has simply focused that toil on a new, critical skill: verification. As a result, the industry is
reinforcing its commitment to trusted, automated analysis to ensure all code—whether written by
developer or an AI—is secure, reliable, and production-ready.

And this new verification challenge isn't just about managing messy code or technical debt; it's
about confronting a much higher-stakes issue: the security of their code. This complex relationship
between AI-generated code and code security is exactly what we'll explore next.

return to TOC ↑

https://www.sonarsource.com/

sonar.com 29/57

2026State of Code Developer Survey report

Top 10 concerns developers have about AI-assisted or generated code
How concerned are you about each of the following when it comes to AI-assisted or
generated code today? | Choice: Extremely / Very Concerned

Exposure of sensitive company or customer data

Introduction of severe security vulnerabilities

Infringements on code licensing or intellectual property

Nondeterministic results (identical prompts creating differing outputs)

Over-reliance on AI leading to a decline in the team's understanding of the codebase

Functional correctness / accuracy of generated code (does what it's supposed to do)

Deskilling or erosion of our own coding abilities

AI tools lacking sufficient context about my specific project or codebase

Introduction of new or subtle security vulnerabilities

Creation of architectural inconsistencies or drift from intended design

The tricky relationship between AI and
code security
57% of developers worry that using AI risks sensitive data
exposure
According to our study, the biggest concern developers have about AI code generation is security—
specifically, 57% of developers worry about the risk of AI code exposing sensitive company or customer
data. This isn't a minor issue; it's a majority of developers voicing a critical fear about the tools they're
increasingly required to use.

This anxiety doesn't stop at data leaks. Developers are also on high alert for what the AI is creating.
Nearly half (47%) are concerned about the introduction of new or subtle security vulnerabilities, and
44% worry about AI introducing severe vulnerabilities. It's clear that while AI boosts speed, it's also
creating a new layer of risk that developers are now responsible for managing.

n=1,149

47%

40%

48%

43%

53%

43%

57%

44%

38%

35%

return to TOC ↑

https://www.sonarsource.com/

sonar.com 30/57

2026State of Code Developer Survey report

AI concerns: Enterprises vs. SMBs
How concerned are you about each of the following when it comes to AI-assisted or generated code today?

n=837; *indicates statistical significance

Enterprises feel the risk most
These AI concerns are most acute in enterprise environments. In large enterprises (over 1,000
employees), the percentage of developers concerned about exposure of sensitive company or
customer data jumps to 61%. These organizations, which live and die by data integrity and compliance,
are understandably the most cautious.

In fact, enterprises are significantly more concerned than smaller companies about:

•	 Direct prompt injections (34%, compared to 25% for SMB)

•	 Indirect prompt injections (35%, compared to 25% for SMB)

•	 Ensuring compliance with industry and organizational standards (38%, compared to 28% for SMB)

SMB Enterprise

Exposure of sensitive company or customer data 54% 61%*

Over-reliance on AI leading to a decline in the team's understanding of the codebase 56% 53%

Deskilling or erosion of our own coding abilities 49% 47%

Introduction of new or subtle security vulnerabilities 44% 49%

Introduction of severe security vulnerabilities 46% 45%

Functional correctness / accuracy of generated code (does what it's supposed to do) 44% 43%

AI tools lacking sufficient context about my specific project or codebase 43% 43%

Creation of architectural inconsistencies or drift from intended design 42% 38%

Infringements on code licensing or intellectual property 36% 39%

Nondeterministic results (identical prompts creating differing outputs) 29% 39%*

Performance and reliability of generated code 38% 32%

Ensuring compliance with industry-specific or organizational coding standards 28% 38%*

Direct prompt injections 25% 34%*

Indirect prompt injections 25% 35%*

return to TOC ↑

https://www.sonarsource.com/

sonar.com 31/57

2026State of Code Developer Survey report

36% of organizations are more rigorous about code quality because of AI
Has there been a change in how you approach the following as a result of the increasing
use of AI coding tools? | Choice: Code quality

We are more rigorous in our
reviews and pay more attention to
this due to AI-generated code

We are still evaluating and figuring
out how AI affects this and what
changes are needed

Don't know / Not sure

N/A: AI tools aren't used
extensively enough to impact this

No significant change related to
AI tool usage

We are less rigorous in our
reviews and are less hands-on

due to AI-generated code

36%

29%

2%

3%

18%

12%
n=1,149

A traditional risk management approach
What does this mean for developers? Our data shows that they're clearly worried about security, but
they aren't yet comfortable leveraging AI to solve it.

One of the use cases commonly touted for agentic AI tools is fixing security issues in code. But our
research shows that while security is a top concern, it's the least common use case for agentic AI: only
28% of developers are using AI agents for security vulnerability patching or remediation. There's a
major gap between what developers need (secure code) and what they're using AI for.

So how are organizations responding to this new risk profile? The truth is that at the moment, there’s no
clear consensus. Roughly a third of development teams report they are now more rigorous about code
security, code quality, and compliance as a direct result of AI's growing influence. But for each of those,
roughly another third of respondents report that they are still evaluating what changes will be needed.

return to TOC ↑

https://www.sonarsource.com/

sonar.com 32/57

2026State of Code Developer Survey report

37% of organizations are more rigorous about code security because of AI
Has there been a change in how you approach the following as a result of the increasing
use of AI coding tools? | Choice: Code security

We are more rigorous in our
reviews and pay more attention to
this due to AI-generated code

We are still evaluating and figuring
out how AI affects this and what
changes are needed

Don't know / Not sure

N/A: AI tools aren't used
extensively enough to impact this

No significant change related to
AI tool usage

We are less rigorous in our
reviews and are less hands-on

due to AI-generated code

37%

31%

3%

4%

17%

7%
n=1,149

32% of organizations are more rigorous about compliance because of AI
Has there been a change in how you approach the following as a result of the increasing use
of AI coding tools? | Choice: Compliance

We are more rigorous in our
reviews and pay more attention to
this due to AI-generated code

We are still evaluating and figuring
out how AI affects this and what
changes are needed

Don't know / Not sure

N/A: AI tools aren't used
extensively enough to impact this

No significant change related to
AI tool usage

We are less rigorous in our
reviews and are less hands-on

due to AI-generated code

32%

31%

5%

5%

20%

7%

n=1,149

return to TOC ↑

https://www.sonarsource.com/

sonar.com 33/57

2026State of Code Developer Survey report

The takeaway
It's clear that as AI adoption moves from experiment to enterprise staple, organizations are
scrambling to build guardrails for security, quality, and compliance. But this new burden of
verifying code that "looks correct but isn't reliable" creates a new, hidden drag on teams. This
friction—spending time fixing subtle AI errors instead of building features—is essentially a new
form of technical debt. Next, we’ll explore how AI is fundamentally reshaping what technical
debt means.

return to TOC ↑

https://www.sonarsource.com/

sonar.com 34/57

2026State of Code Developer Survey report

88% of developers report at least one negative impact of AI on technical debt
In which of the following ways, if any, has AI-generated or assisted code impacted your team /
company’s technical debt?

Trying not to expand technical debt
Most developers have seen both positive and negative
effects of AI on technical debt
When it comes to technical debt, our study uncovered a complex picture. We found that AI is taking
away with one hand and giving back with the other.

Let’s start with the detrimental effects. Nearly all developers (88%) report at least one negative impact
of AI on their technical debt.

Created code that looked correct but was not reliable

Created unnecessary or duplicative code

Created unreliable or buggy code

Created code that was difficult to maintain or refactor

Introduced integration issues or compatibility issues

Increased security vulnerabilities

Wrote poor or no documentation

n=1,136

88%
respondents
citing at least
one issue

53%

40%

29%

27%

21%

17%

14%

return to TOC ↑

https://www.sonarsource.com/

sonar.com 35/57

2026State of Code Developer Survey report

Top 5 toil work tasks that hinder productivity or increase frustration
Thinking about your current workflows, what are your biggest sources of "toil work" that
hinder / sap productivity or increase frustration in your current role?

53% of developers attributed a negative impact on their technical debt due to AI creating code that
looked correct but was unreliable. This is a particularly pernicious problem because it may create a
false sense of security and cause developers to skip thorough review and testing.

The second-biggest negative impact is bloat. 40% of developers say AI has increased technical debt
by creating unnecessary or duplicative code. Our LLM personality research confirms that LLMs have
inherent tendencies to create verbosity, complexity, and unnecessary technical debt when writing code.

This is a critical issue because "managing technical debt" is already the #1 source of toil for core
development tasks, with 41% of developers placing it in their top 5 frustrations. AI, if unmanaged, could
pour fuel on an existing fire by generating a high volume of code that's deceptively unreliable.

Managing technical debt (e.g., refactoring complex or outdated code)

Debugging legacy or poorly documented code

Finding information or understanding existing systems

Correcting or rewriting code created by AI coding tools

Managing broken or outdated dependencies

n=1,149

41%

32%

23%

21%

17%

return to TOC ↑

https://www.sonarsource.com/
https://www.sonarsource.com/the-coding-personalities-of-leading-llms.pdf

sonar.com 36/57

2026State of Code Developer Survey report

93% of developers report at least one positive impact of AI on technical debt
In which of the following ways, if any, has AI-generated or assisted code impacted your team /
company’s technical debt?

AI is tackling the grunt work
Despite the negative impact on technical debt, nearly all developers (93%) also report at least one
positive impact from AI on technical debt as well. Developers are clearly using AI to tackle the most
tedious parts of managing technical debt.

The top positive impacts from AI are all about reducing developer toil work:

•	 Improved documentation (57%)

•	 Improved test coverage and debugging (53%)

•	 Refactoring or optimizing existing code (47%)

This shows developers are intelligently applying AI to the exact problems they hate dealing with. The
"improved documentation" stat is especially interesting. Experienced developers, who have likely spent
years wrestling with poorly documented legacy systems, seem to value this the most. We found that
65% of developers with over 20 years of experience cited improved documentation as a key technical
debt benefit of AI.

Improved documentation

Improved test coverage and debugging

Refactored or optimized existing code

Improved code maintainability

Reduced defect rates

Reduced security vulnerabilities

n=1,136

93%
respondents
citing at least
one benefit

57%

53%

47%

32%

24%

18%

return to TOC ↑

https://www.sonarsource.com/

sonar.com 37/57

2026State of Code Developer Survey report

The takeaway
It's clear that AI's impact on technical debt is complicated—it's both a powerful clean-up tool and
a new source of messy, hidden problems. But this new reality isn't being experienced the same
way by everyone on the team. Our data shows a fascinating split in how developers are using
AI, what they're using it for, and what they worry about. One of the biggest dividers? Years of
experience.

Next, we'll dig into the differing AI use cases and attitudes of junior and senior developers—and
what it means for your team's code health.

The data paints a clear picture. AI isn't a simple "fix technical debt" button. It's a powerful, but
potentially messy, new collaborator. It’s helping developers clean up old messes (like documentation
and testing) but creating new, more subtle messes in the process (like unreliable or duplicative code).

Senior developers value impact of AI on technical debt documentation
In which of the following ways, if any, has AI-generated or assisted code impacted your team / company’s
technical debt?

≤ 10 years 11-20 years ≥ 20 years

n=1,136Positive impact on technical debt documentation
0

20

40

60

80

54% 55%
65%

return to TOC ↑

https://www.sonarsource.com/

sonar.com 38/57

2026State of Code Developer Survey report

AI coding and the experience gap
The impacts of AI coding are hitting junior developers harder
Our study reveals a fascinating perception gap: less-experienced developers (≤10 years) are more likely
to report productivity benefits from using AI tools than their most-experienced peers (>20 years), but
they’re also more likely to report that reviewing AI-generated code takes greater effort.

The junior-senior split: How AI is used
We're seeing a clear divergence in how these two groups apply AI.

Less-experienced developers estimate that 45% of their committed code is AI-assisted, slightly more
than the 40% estimated by their most-experienced peers. The junior group is also more likely to use
newer tools like Cursor and Perplexity, as well as agentic AI, whereas senior developers will tend to rely
on more proven AI tools like Copilot.

Less-experienced developers are also more likely than senior developers to use AI for development
tasks like explaining existing code, updating functionality, and generating tests. In contrast, their most-
experienced colleagues are more likely to use it for code review and assisting development of new code.

AI use case adoption based on years of experience

For which of the following tasks is your team / company using AI coding tools?

≤ 10 years 11-20 years ≥ 20 years

Assisting development of new code 86% 92%* 90%

Explaining or understanding existing code 80%* 78% 74%

Adding or updating functionality in existing code 78% 78% 68%*

Generating tests 76% 77% 69%*

Writing documentation 74% 75% 73%

Researching technical solutions or exploring APIs/libraries 75% 75% 71%

Refactoring or optimizing existing code 74% 72% 69%

Debugging code (for example, stack trace analysis) 67% 65% 63%

Code review 52% 57% 58%

Translating code from one programming language to another 49% 52% 46%

n=1,149; *indicates statistical significance

return to TOC ↑

https://www.sonarsource.com/

sonar.com 39/57

2026State of Code Developer Survey report

Junior developers report higher average increase in personal productivity due to AI
Please estimate the percentage change in your personal productivity due to AI coding tools.

Junior developers report higher job satisfaction related to the use of AI/AI-coding tools
To what extent do you agree with each of the following statements as it relates to the use of AI coding tools
and AI-assisted or generated code? | Choice: I'm more satisfied with my job overall since we started using AI

≤ 10 years

≤ 10 years

11-20 years

11-20 years

≥ 20 years

≥ 20 years

Junior developers report higher productivity
For less-experienced developers, the upside of AI is undeniable. They report significantly higher gains
across the board than their senior counterparts:

•	 Productivity: Junior developers report a 40% average productivity increase versus 32% for their
more experienced peers.

•	 Job satisfaction: 58% report higher job satisfaction, compared to 49% of senior developers.

n=1,048

n=1,149

Average increase

More satisfied with job overall

0

0

10

20

20

40

30

40

60

40%

58%

34%

53%

32%

49%

return to TOC ↑

https://www.sonarsource.com/

sonar.com 40/57

2026State of Code Developer Survey report

62% of junior developers say they have more time to advance their skills, far outpacing the 51%
of senior developers who agree.
To what extent do you agree with each of the following statements as it relates to the use of AI coding tools and
AI-assisted or generated code? | Choice: I have more time to spend on advancing my skills than before I used AI

Junior developers find AI more effective in adding or updating functionality in existing code
How effective are AI coding tools for each of the following tasks you or your team / company has used
them for? / Choice: Extremely / Very Effective

≤ 10 years

≤ 10 years

11-20 years

11-20 years

≥ 20 years

≥ 20 years

•	 Skill advancement: 62% say they have more time to advance their skills, far outpacing the 51% of
senior developers who agree.

Less-experienced developers also perceive AI as being more effective in adding or updating
functionality in existing code. When asked about AI's effectiveness for this use case, 45% of junior
developers said it was effective, compared to only 34% of senior developers.

n=1,149

n=1,149

Have more time to spend on advancing skills

AI effectiveness in adding or updating functionality in existing code

0

0

20

20

30

10

40

40

60

80

50

62%

45%

57%

43%

51%

34%

return to TOC ↑

https://www.sonarsource.com/

sonar.com 41/57

2026State of Code Developer Survey report

Senior developers are less concerned about AI producing code that looks correct but isn't reliable
To what extent do you agree with each of the following statements as it relates to the use of AI coding tools and AI-
assisted or generated code? | Choices: Completely / Somewhat agree

Senior developers are less concerned about AI generating too many lines of code
To what extent do you agree with each of the following statements as it relates to the use of AI coding tools and AI-
assisted or generated code? | Choices: Completely / Somewhat agree

≤ 10 years 11-20 years ≥ 20 years

Senior developers report fewer concerns
Looking at the findings above, you would be forgiven for thinking that junior developers are generally
less concerned about the negative impacts of AI than their senior colleagues. But it turns out that the
reverse is true.

Senior developers are significantly less likely to agree with a number of critical concerns:

•	 Reliability: 48% say AI code "looks correct but isn't reliable" (vs. 66% of junior developers).

•	 Volume: 32% agree that "too many lines of code are being generated with AI" (vs. 47% of junior
developers).

n=1,149AI produces code that looks correct but isn't reliable
0

20

40

60

80
66% 65%

48%

≤ 10 years 11-20 years ≥ 20 years

n=1,149Too many lines of code are being generated with AI
0

20

30

10

40

50 47% 45%

32%

return to TOC ↑

https://www.sonarsource.com/

sonar.com 42/57

2026State of Code Developer Survey report

Senior developers are less concerned about AI making complex coding tasks more difficult due to
lack of context or understanding
To what extent do you agree with each of the following statements as it relates to the use of AI coding tools and AI-
assisted or generated code? | Choices: Completely / Somewhat agree

Senior developers are less likely to say that reviewing AI-generated code requires more effort
compared to developer-written code
Does reviewing AI generated code require more or less effort than reviewing code written by developers?

•	 Context: 31% agree that AI "makes complex coding tasks more difficult because it lacks context" (vs.
47% of junior developers).

This directly translates into review effort. Developers with 10 years or less of experience are
significantly more likely (40%) to say that reviewing AI-generated code requires more effort than
reviewing code written by a developer. Only 29% of developers with ≥ 20 years of experience feel the
same way.

≤ 10 years

≤ 10 years

11-20 years

11-20 years

≥ 20 years

≥ 20 years

n=1,149

n=1,138

0

0

20

20

30

30

10

10

40

40

50

50

AI makes completing complex coding tasks more difficult because it often lacks context or understanding

Reviewing AI-generated code requires more effort than developer-written code

31%

29%

43%

42%

47%

40%

return to TOC ↑

https://www.sonarsource.com/

sonar.com 43/57

2026State of Code Developer Survey report

The impacts of experience
The data tells a clear story. Less-experienced developers are leaning on AI to understand and write
code, getting a massive productivity boost, but also the first to feel the pain when that code is buggy,
verbose, or hard to maintain. More-experienced developers, meanwhile, appear to be more skeptical
of its output, applying it to tasks like prototyping, where speed is key and the code isn't expected to be
perfect. They seem less concerned about the potential negative impacts of AI code, perhaps because
they are more targeted in how they use AI tools, or because they believe in their own abilities to catch
and correct issues with AI code before they cause problems.

The takeaway
It's clear that a developer's years of experience fundamentally shape their relationship with AI,
from the tools they choose to the friction they feel. But experience isn't the only major divide our
study uncovered. The size of an organization also plays a critical role in shaping strategy and
outcomes. Next, we'll explore why smaller companies are reporting bigger productivity gains from
AI, while large enterprises are moving more cautiously, focusing on rigorous compliance.

Senior developers also express less anxiety about the long-term impact of AI on their skills, with 41%
concerned about the erosion of their personal coding abilities (vs. 50% of junior developers) and 45%
worried about a decline in codebase understanding (vs. 56% of junior developers).

Senior developers are less worried about the impact AI is making on their skills & abilities
How concerned are you about each of the following when it comes to AI-assisted or generated code today? | Choice:
Extremely concerned / Very concerned

≤ 10 years 11-20 years ≥ 20 years

n=1,149

0

20

40

60

Over-reliance on AI leading to
a decline in understanding of
codebase

Deskilling or erosion of personal
coding abilitie

56%
50%

56%
50%

return to TOC ↑

45%
41%

https://www.sonarsource.com/

sonar.com 44/57

2026State of Code Developer Survey report

SMB developers report a higher average increase in personal productivity due to AI
Please estimate the percentage change in your personal productivity due to AI coding tools.

How enterprises and small businesses are
approaching AI
Small businesses move faster with AI, but enterprises get
better code
According to our study, developers at small-to-medium businesses (SMBs under 200 employees) report
a 39% increase in personal productivity—slightly outpacing other developers who report a 34% lift.

While nearly all developers are seeing productivity gains, the data reveals two distinct realities. Smaller
teams are sprinting ahead with accessible tools to boost raw speed, while enterprises are taking a more
measured approach, focusing on governance and long-term code health.

n=1,048Average increase
0

10

20

30

40
39%

34% 34%
SMB Mid-market Enterprise

return to TOC ↑

https://www.sonarsource.com/

sonar.com 45/57

2026State of Code Developer Survey report

Smaller organizations are more likely to report gains in time-to-market
What impact has AI-generated or assisted code had on your team / company for each of the following? | Choices:
Very positive / Somewhat positive impact

Enterprises report higher positive impacts on code quality and code maintainability
What impact has AI-generated or assisted code had on your team / company for each of the following? | Choices:
Very positive / Somewhat positive

The trade-off between speed and quality
It’s clear that smaller organizations are capitalizing on the immediate velocity AI offers. Beyond the
higher average productivity gains, 43% of SMB developers report being "much more productive"
personally, compared to only 36% of enterprise developers. This focus on speed translates directly
to business outcomes, with smaller organizations more likely to report gains in time-to-market (76%,
compared to 67% of enterprise developers).

However, enterprises are seeing a different upside. While they report lower raw speed gains, they are
more likely to report improvements in code quality and maintainability (almost 20% more often than
SMB). This suggests that larger organizations are leveraging AI to improve the quality of their massive
existing codebases.

n=1,149

n=1,149

Positive impact on time to market

Positive impact of AI on code quality Positive impact of AI on code maintainability

0

0

20

20

40

40

60

60

80

80

76%

52% 50%

70%

60% 56%

67%

61% 60%

SMB

SMB

Mid-market

Mid-market

Enterprise

Enterprise

return to TOC ↑

https://www.sonarsource.com/

sonar.com 46/57

2026State of Code Developer Survey report

The benefits of enterprise governance
Enterprises appear to be managing AI risks through rigorous governance. They are statistically more
concerned about the exposure of sensitive data (61%).

Enterprises are more concerned about the
exposure of sensitive data when it comes to
AI-generated or assisted code
How concerned are you about each of the following
when it comes to AI-assisted or generated code today?
| Choice: Extremely concerned / Very concerned

n=1,149

Exposure of sensitive company or customer data
0

40

20

60

80

54% 54% 61%

SMB Mid-market Enterprise

This is driving them to implement stricter controls:

•	 Formal policies: Enterprises are more likely to have well-defined, distinct guidelines or automated
checks specifically for AI-generated code (18%) compared to SMBs (12%).

Enterprises are more likely to have distinct guidelines and / or automated checks specifically for
AI-generated code
Does your [org] have specific guidelines, policies, or quality gates for the review, testing, and acceptance of AI-
generated code that differ from those for [dev-written] code?

n=1,149We have well-defined, distinct guidelines and/or automated checks specifically for AI-generated code
0

10

5

15

20

12%
10%

18%
SMB Mid-market Enterprise

return to TOC ↑

https://www.sonarsource.com/

sonar.com 47/57

2026State of Code Developer Survey report

•	 Compliance rigor: When it comes to compliance reviews for AI-generated code, 39% of enterprise
respondents say they are more rigorous now, compared to only 28% of SMBs.

Enterprises are the most rigorous and pay more attention to AI-generated code when it
comes to compliance
Has there been a change in how you approach the following as a result of the increasing use of AI coding tools?

n=1,149We are more rigorous in our reviews and pay more attention to this due to AI-generated code
0

20

10

30

40

28% 27%

39% SMB Mid-market Enterprise

return to TOC ↑

https://www.sonarsource.com/

sonar.com 48/57

2026State of Code Developer Survey report

Small and medium businesses report more negative impacts
Another strong indicator that enterprises are getting better ROI on AI? SMBs often report up to 11
percentage points higher negative impacts due to AI. Perhaps because they may lack the formal
guardrails of larger orgs, they experience more acute friction managing AI code.

SMBs consistently report higher negative impacts due to AI
To what extent do you agree with each of the following statements as it relates to the use of AI coding tools
and AI-assisted or generated code? | Choices: Completely agree / Somewhat agree

%

AI often produces code that looks correct but isn't reliable

It requires a lot of effort (in prompting, fixing, etc.) to get
good code from AI

Too many lines of code are being generated with AI

AI makes completing complex coding tasks more difficult
because it often lacks context / understanding

Reviewing AI-generated or assisted code is more time
consuming than developer-written code

Spend too much time reviewing and fixing code written by
other developers who rely on AI to write code

Spend too much time fixing poorly-written AI code

Spend too much time reviewing AI code

AI makes it harder to ship confidently to production

AI code is poorer quality than developer-written code

AI delays releases because of extra review and fixes
required

AI complicates coding and slows me down

67

62

47

43

40

36

37

38

36

37*

20

15

63

64

40

40

36

38

36

34

32

30

19

13

56*

58

42

40

35

35

36

34

33

27

19

14

n=1,149; *indicates statistical significance

SMB Mid-market Enterprise

return to TOC ↑

https://www.sonarsource.com/

sonar.com 49/57

2026State of Code Developer Survey report

SMB developers are more likely to cite
"correcting or rewriting the code created by AI
coding tools" as one of the top sources of toil
work
Thinking about your current workflows, what are
your biggest sources of "toil work" that hinder / sap
productivity or increase frustration in your current role?

The most frequently reported negative impact of AI on code is that it looks correct but isn’t reliable.
Notably, 67% of SMB developers agree with that statement, compared to 56% of enterprise developers.

Perhaps most telling, SMB developers are significantly more likely to cite "correcting or rewriting code
created by AI coding tools" as a top source of toil work (28%) compared to enterprise developers (17%).

This indicates that while SMBs are moving fast, they are paying for it in technical debt and rework.
They are also less likely to use automated code review tools to check AI-generated code, which may
exacerbate the issue.

The data paints a picture of two different trajectories. SMBs are volume-driven adopters using low-
friction tools to boost personal speed, but they face increased developer toil correcting unreliable
output. Enterprises are deliberate, risk-averse adopters prioritizing data security and systemic
improvements.

n=1,149

Correcting or rewriting code created by AI coding tools
0

10

20

30 28%

20%
17%

SMB Mid-market Enterprise

The takeaway
While AI adoption is high across the board, the experience of that adoption is clearly different.
Enterprises are investing in the process and governance to manage AI-generated code, which
leads to higher-quality, more maintainable code. SMBs are reaping the immediate speed benefits
but are feeling the pain in verification and rework. This highlights a critical lesson for everyone:
generating code faster is only half the battle. The real value comes from being able to trust and
verify that code efficiently.

return to TOC ↑

https://www.sonarsource.com/

sonar.com 50/57

2026State of Code Developer Survey report

SonarQube: The essential verification
layer for AI code
SonarQube users get more ROI out of AI coding tools than
other developers
If there’s one thing this research has shown, it’s that AI does not fix a broken system. It simply amplifies
what is already there.

If you have a high-trust, well-architected system with a robust testing and verification platform, AI will
amplify your efficiency. But if you have a low-trust, chaotic system, AI will only amplify that chaos. It will
give you more low-quality, untrusted, "looks correct but isn't" code, faster than ever before.

In light of this, it’s no surprise that developers not using SonarQube are 80% more likely to report that
AI adoption led to a higher frequency of outages and incidents, and 46% more likely to say AI had a
negative impact on their overall code quality.

This data points directly to the solution to the "AI accountability crisis." When teams adopt AI to "vibe"
(generate code) alongside a strong, independent way to "verify" (check that code), they aren't just
getting productivity gains—they're actively decreasing their risk.

Non-users of SonarQube are more likely to report negative impact of AI on
outage frequency and code quality
What impact has AI-generated or assisted code had on your team / company for each of the
following? | Choice: Very / somewhat negative impact

n=1,149Negative impact on frequency of
outages/incidents

0%

8%

4%

12%

16%

80%

46%

SonarQube users Non-users

7%

16%

4%

11%

Negative impact on code quality

return to TOC ↑

https://www.sonarsource.com/

sonar.com 51/57

2026State of Code Developer Survey report

SonarQube users find AI more effective for core tasks
The data shows that SonarQube users aren't just avoiding the pitfalls; they're actively getting more
value from their AI tools. We saw a clear pattern: SonarQube users consistently rated AI's effectiveness
19% higher for assisting in the creation of new code.

SonarQube users consistently report higher levels of Al effectiveness assisting
in the development of new code
How effective are Al coding tools for each of the following tasks you or your team / company
has used them for? | Choice: Extremely / Very Effective

n=1,149Effectiveness assisting in the development of new code
0%

40%

20%

60%

80%

19%

SonarQube users Non-users

When developers have a trusted partner like SonarQube providing real-time, actionable code
intelligence, they can use AI tools with more confidence. They're not just "vibe coding" and hoping for
the best; they're verifying as they go, which makes the whole process more effective.

Better effectiveness leads to better strategic outcomes
This increased effectiveness isn't just a nice to have. It translates directly into the strategic outcomes
that engineering leaders and CIOs care about: higher quality, lower risk, and reduced costs.

When we asked about the positive impacts of AI adoption, Sonar users were:

•	 24% more likely to report a positive impact on vulnerability rates.

•	 20% more likely to see a positive impact on defect rates.

•	 18% more likely to see a reduction in rework and patch costs.

•	 16% more likely to report a positive impact on technical debt.

•	 12% more likely to report a positive impact on overall code quality.

62%
52%

return to TOC ↑

https://www.sonarsource.com/

sonar.com 52/57

2026State of Code Developer Survey report

Sonar users report higher positive impact of AI on the following activities
What impact has AI-generated or assisted code had on your team / company for each of the following?

n=1,149

0%

20%

40%

60%

80%

Higher code
quality

Lower
technical debt

Lower rework/
patch costs

Lower defect
rates

Lower
vulnerability rates

SonarQube users Non-users

This data provides a clear pathway to help developers adopt AI coding tools safely and build code
everyone can trust. Simply generating code faster doesn't lead to real productivity if it creates a
massive verification bottleneck or, worse, introduces new risks that show up as production outages.
Real productivity comes from speeding up the entire development lifecycle.

SonarQube users are seeing better results because they have the "verify" part of the equation built in.
By integrating automated code review for both developer-written and AI-generated code directly into
their workflow, they catch issues earlier, reduce the burden of manual review, and ensure that all code
meets their quality and security standards before it ever gets to production.

Ultimately, AI is a powerful collaborator, but it's not infallible. The organizations winning with AI are the
ones who treat it that way—empowering their teams to vibe, then verify.

12%
16% 18% 20%

24%
62%

56% 52%
45% 47%

40% 44%
37% 39%

31%

return to TOC ↑

https://www.sonarsource.com/

sonar.com 53/57

2026State of Code Developer Survey report

Appendix: About our survey
demographics
To understand the current state of software development, we surveyed 1,149 technology professionals
from around the globe. We wanted to ensure our data reflected the reality of modern engineering teams,
so we gathered insights from a diverse mix of developers, managers, and executives working across a
wide range of industries and company sizes.

Here’s a closer look at who we surveyed.

A global perspective

Our respondents come from all over the world, giving us a truly global view of the developer landscape.
While just over half (52%) are based in North America, we have significant representation from Europe
(27%) and the APAC region (13%), with the remainder from Latin America, the Middle East, and Africa.

Region

Middle East / Africa

North America

LATAM

APAC

Europe

1%

52%

7%

13%

27%

return to TOC ↑

https://www.sonarsource.com/

sonar.com 54/57

2026State of Code Developer Survey report

Experienced and hands-on
We tapped into professionals across a wide band of experience and seniority.

We also captured the perspective of engineering leadership. Nearly half of our sample holds a
management title, ranging from Managers and Directors to VPs and C-level executives.

When it comes to their daily work, the vast majority are still deep in the code.

•	 57% of respondents both write code and manage developers.

•	 28% are focused solely on writing code.

•	 15% focus exclusively on managing developers.

This mix ensures our findings reflect both the tactical realities of writing code and the strategic
challenges of managing it.

Seniority

Coding involvement

President or C-level Executive

Manages developers
& writes code

Vice President or SVP

Director or Senior Director

Manager or Senior Manager

Entry-level Individual Contributor

Only manages developers

Mid-level Individual
Contributor

Senior, Lead, or Principal IC

Only writes code

5%

57%

6%

17%

19%

1%

15%

10%

43%

28%

return to TOC ↑

https://www.sonarsource.com/

sonar.com 55/57

2026State of Code Developer Survey report

Organizations of all sizes

We wanted to understand how development happens at all scales, and our demographics reflect
that. Nearly half of our respondents (43%) work at enterprises with over 1,000 employees. Another
27% work at mid-market companies (201–1,000 employees), while the remaining 29% work at SMB
organizations (1–200 employees).

Diverse industries and applications
While the majority of our respondents (62%) work in the technology sector (software, hardware, and
services), we also heard from professionals in:

•	 Financial Services & Insurance (9%)

•	 Healthcare & Life Sciences (5%)

•	 Retail & E-commerce (5%)

•	 Manufacturing, Government, and other key sectors.

The type of software they are building is just as varied. About one-third (28%) are building customer-
facing web or mobile apps, while others are focused on commercial software (29%), custom client
applications (19%), and internal tools (18%).

Company size

Enterprise

SMB

Mid-market

43%

29%

27%

return to TOC ↑

https://www.sonarsource.com/

sonar.com 56/57

2026State of Code Developer Survey report

Analyst's note on data interpretation
Percentages in this report may not sum to exactly 100% due to rounding or multi-select questions. All
data is based on the total sample of 1,149 respondents unless otherwise noted.

return to TOC ↑

https://www.sonarsource.com/

October 2025Executive summary: Coding Personalities of Leading LLMs

sonar.com ©2026, SonarSource Sàrl

https://www.sonarsource.com/

